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Summary 
The GB potato industry requires high quality, robust data on the spatial and spatiotemporal 

risks of late blight to benefit decision-making and long-term strategic planning. In this project, 

data from late blight outbreak sampling by the AHDB Potatoes Fight Against Blight programme 

(20032018) were analysed together with environmental variables to provide new information 

on the spatial epidemiology of late blight in GB. The results were used to produce visual aids 

to facilitate improved decision-making.  

Late blight severity is highly dependent on the local weather, so the timing, number and spatial 

pattern of sampled outbreaks varied from one season to the next. To reveal trends, the 

outbreak data collected over 16 seasons were analysed using the ESRI ArcGIS Pro 2.4 

geospatial analysis platform. This revealed statistically significant patterns in space and time 

for early outbreaks, overall incidence, and the distribution of various pathogen genotypes. 

Together, these analyses provide valuable information on the variable risk posed by late blight 

across the potato production areas of GB.  

ArcGIS was also used to calculate the velocity of spatial spread for two recently emerging, 

aggressive clones in GB (36_A2 and 37_A2). The results provide hitherto unseen information 

on the speed at which newly introduced clones can spread across a country. 

Machine learning techniques (neural network models) were used to analyse weather, soil, 

geology, and topography data to identify the principle factors associated with late blight 

occurrence.  

The key findings were: 

Early outbreaks 

 Spatial analyses: Averaged over all years, the statistically significant hot spots (clusters of high 

incidence) of early outbreaks of disease were generally found in the south of England and 

Wales, particularly near the coast, whereas a large cold spot (clusters of low incidence) 

extends across the production regions of Scotland. This supports the role of climate in the 

earliest occurrence of outbreaks. 

 Spacetime analyses: When analysed as a time series, the spatial hot spots of early disease 

tended to be sporadic: i.e. locations that are on-again off-again hot spots. There were also 

some sporadic and consecutive hot spots (a run of recent hot spots) of early outbreaks in the 

Angus / Aberdeenshire regions. This may relate to a warming climate resulting in an increased 

frequency of early outbreaks in Scotland in recent years. 

 Driving factors: As expected, the date of first outbreak was later in the north of GB, but only 

by a matter of weeks. Machine learning was used to develop a model that was 91.2% accurate 

in predicting low and high levels of incidence of early outbreaks. It identified temperature and 

precipitation as the most important predictors of early outbreak incidence. 

 Visual aids for decision-making: Colour-coded maps were produced to show the overall risk of 

early outbreaks by postcode district, and the week of the year these were most likely to occur. 

Spatial spread of disease across the whole season 

 Risk of spread of disease among neighbouring postcode districts was highest in the potato 

growing regions of Tayside, Fife, Lothian, and East Anglia. 

 The velocity of spatial spread was calculated from early foci of genotypes 36_A2 and 37_A2 

and ranged from 317 km per week. 
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 Visual aids for decision-making: A colour-coded map was produced to show the risk of spread 

of disease among postcode districts. 

Overall incidence, 2003-2018 

 Spatial analyses: Statistically significant hot spots of sampled late blight incidence were found 

in the Angus, Tayside and Fife regions of Scotland, and in East Anglia, Kent and East Sussex in 

England. No cold spots were identified.  

 Spacetime analyses: There were three types of temporal trend identified in the hot spots of 

incidence: consecutive, sporadic, and new (appearing in the final year). The lack of any 

persistent hot spots is a consequence of large inter-annual variation in the distribution of 

disease. 

 Driving factors: A model was developed that can estimate outbreak risk based on 

environmental factors. The model revealed a strong positive relationship between density of 

potato cropping and late blight outbreak risk. Weather also had a strong impact on outbreak 

risk, particularly temperature, humidity, rainfall and windspeed. Topography (elevation, 

slope, aspect) had a large impact on outbreak risk, and there was also evidence of an 

association with soil conditions and geological type. 

 Visual aids for decision-making: A colour-coded map was produced to show the overall risk of 

late blight by postcode district. 

Pathogen genotypes 

 Spatial analyses: The mean spatial patterns of the genotypes 13_A2, 6_A1, 8_A1, 37_A2, and 

36_A2 were analysed and differences in the central tendency, dispersion, and directional 

trends of these distributions were observed. The pattern of hot and cold spots varied markedly 

for each genotype, and some opposing patterns suggested competition and displacement.  

 Spacetime analyses: Most of the spatial clusters of the pathogen tended to be consecutive hot 

spots (a run of recent hot spots). The lack of any persistent (long-term) hot spots or cold spots 

of any type was due to a large degree of inter-annual variation in genotype distributions. 

Several new hot spots (hot spots in the final year of analysis) were found for genotypes 36_A2 

and 37_A2, in line with their recent invasive spread.  

 Driving factors: A model was developed to predict the dominant genotype in each postcode 

district. It identified precipitation and humidity as the most important predictors, suggesting 

moisture plays an important role in competition among genotypes. The emergence and rapid 

spread of genotypes 13_A2 and 6_A1 in 2006-2007 was clear but there were few clear 

patterns to their distribution in the subsequent years. One obvious feature was the local 

spread of 6_A1 in eastern Scotland in 2011 followed by its dominance in the subsequent years. 

This indicates the significance of local sources of primary inoculum carried over from the 

previous season. However, the drivers of the large variation in other genotype distributions 

between years were not clear and require further investigation. 

 Visual aids for decision-making: A video was produced to show the changing pattern of 

genotype distributions each year.  

Introduction 
Although current methods of late blight management are effective, there is clear scope for 

improvement as there remains a heavy reliance on calendar spray regimes and challenges 

relating to the timing of the first spray and the position in the spray programme for the 

chemistry that offers ‘premium’ blight control. The primary aim of the proposed research is to 
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empower agronomists and growers with a new understanding of the epidemiology of late blight 

in GB, and new visual aids to facilitate improved decision-making: 

Agronomists and growers need to know if their crops are at risk from early outbreaks of late 

blight due to factors such as: carryover of inoculum (intense blight pressure) from the previous 

season, intensity of potato production, and the presence of aggressive pathogen lineages in 

their own and surrounding postal districts. 

Agronomists and growers need to know if late blight is likely to spread from neighbouring 

postal districts to theirs, and how quickly. 

Agronomists and growers would benefit from an exact quantification of the historical risk of 

late blight occurrence in their own and neighbouring production areas to better plan for the 

growing season ahead. 

The industry as a whole needs to understand the drivers of past change in the GB blight 

population in order to predict changes in the distribution of new aggressive lineages 

Previous AHDB Potatoes-funded work, using samples submitted by Fight Against Blight (FAB) 

scouts from 2006 to 2018 had shown that British populations of the potato late blight pathogen, 

Phytophthora infestans, had changed markedly over time (Cooke et al., 2009; Cooke et al., 

2013; Cooke, 2019). Subsequent AHDB Potatoes-funded work that examined this change 

using controlled environment experiments to investigate differences among the dominant 

genotypes in their response to weather conditions (Chapman 2012), although valuable, 

yielded conflicting results. No single genotype consistently showed dominance in terms of 

weather-dependent infection criteria, or in terms of competition when multiple isolates infected 

a plant at the same time. In further AHDB Potatoes-funded work (Dancey et al., 2017; Dancey, 

2018;R473 Late Blight Models), a different approach was adopted whereby experimental work 

was combined with mapping and statistical modelling of existing AHDB Potatoes FAB late 

blight outbreak data to develop a new national warning system for late blight; the Hutton 

Criteria. This approach proved successful, leading to significant improvements in the 

performance of the national warning system, whereas previously the Smith Period showed 

great spatial variation in predictive power and performed poorly in some regions. The Hutton 

Criteria, currently deployed by BlightWatch (https://blightwatch.co.uk/) plays an important role 

in determining when to start the blight management programme. Although optimal fungicide 

application timing is important throughout the season, the early sprays are especially critical. 

Most fungicide chemistry relies on a protectant effect and managing an established infection 

is thus extremely challenging (Cooke et al., 2011). In this project, we build upon the success 

of this mapping and modelling work, and extend our analyses of these existing data to answer 

key epidemiological questions, derive new epidemiological parameters, and produce visual 

aids that will support informed decision making and long-term strategic management of late 

blight, and fungicide and resistance resources. 

All infection obviously requires propagules of primary inoculum which, in the case of P. 

infestans, may be asexual or sexual spores carried over from the previous season. Previous 

work has shown the domination of clonal pathogen lineages within GB potato crops indicating 

that asexual inoculum carried over on infected tubers is the most prevalent source (Cooke, 

2019). Potato seed, volunteer plants in neighbouring fields and plants growing on discard piles 

are the three main sources of such infection and their management is a key part of blight 

control strategies (Cooke et al., 2011). The objectives of this project were: 

Determine whether the pattern of the earliest outbreaks of disease within each growing season 

is random, regular, or aggregated, and the spatial scales at which these patterns occur. 

https://blightwatch.co.uk/
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Identify geographic areas where late blight persistently occurs early in the season. Identify the 

principle factors associated with early outbreaks of disease. 

Track the spread of late blight between postal districts over the course of each growing season 

to determine whether the pattern of outbreaks is random, regular, or aggregated, and the 

spatial scales at which these patterns occur. Determine the likelihood of spread of late blight 

among the postal districts of GB. Derive the rate of spatial spread across the landscape. 

Identify geographic areas where incidence is consistently low or high over multiple growing 

seasons. Identify the principle factors associated with persistently low and high incidence of 

disease. Determine the relative risk of late blight occurrence within each postal district. 

Track the change in the spatial distribution of pathogen genotypes over the duration of the 

study period. Identify the principle drivers of this change. 

Methods 

Datasets 

The late blight outbreak data spanned a 16-year period (2003–2018) and consisted of the 

date, coordinates (UK postcode district centroid), potato variety, pathogen genotype and 

‘stage of outbreak’ of 2518 late blight outbreaks sampled from across GB. These data are 

collected routinely each year by blight scouts as part of the Agriculture and Horticulture 

Development Board (AHDB) Potatoes ‘Fight Against Blight’ service that has been surveying 

and reporting on late blight incidence since 2003. In the UK, there are 127 postcode areas 

(AB, AL, B etc.) and around 3000 postcode districts (AB10, AB11, etc.). 

Data on the spatial distribution of potato cropping throughout GB was also provided by AHDB. 

This provided information on the density and spatial distribution of the host crop in each year. 

Foliar and tuber blight resistance data for potato varieties were obtained from the AHDB 

Variety database (http://varieties.ahdb.org.uk/) and integrated with the crop data. 

Hourly weather data corresponding to every outbreak location were provided by the UK Met. 

Office (UKMO) (20112018). 

Spatial datasets of a large number of soil, geology, and topography (elevation, slope, aspect) 

variables were generated at a 100 metre resolution. These data were acquired from multiple 

sources (FAO WRB global soil dataset, OneGeology national geological maps, Shuttle Radar 

Topography mission global elevation dataset), all of which are available freely online. These 

latter datasets were acquired for other work prior to this project and had already been 

organised into data formats suitable for this project. 

Data pre-processing 

Preparation and integration of the datasets was necessary for the work to be carried out. 

Primary copies of all datasets were saved to a secure network location, then local copies were 

saved prior to the work. 

The AHDB FAB data was standardised across the multiple variables included, with variety 

names and date formats corrected. Observations made over multiple years had resulted in a 

dataset that required a significant effort to clean, but which has provided us (and AHDB in 

future) with an optimised dataset that is of greater utility in the long-term. 

Cleaning of the outbreak data was carried out using a combination of methods: 
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 Individual Excel worksheets were saved to separate text files where regular expressions could 

be used to standardise data fields, particularly date fields which were sometime recorded as 

DD-MMM-YYYY format, and other times as YYYY-MMM-DD, and where spaces/non printing 

characters/special characters had to be removed.  

 For years where grid references were present, data was loaded into GIS software (ArcGIS) and 

plotted spatially; data points with invalid grid references were removed (no effort was made to 

investigate cause of miscoding due to size of dataset/time constraints). 

Files were then imported into a database (PostgreSQL) as individual tables, and SQL code 

used to select out a consistent set of data fields into a single ‘master’ table. These data were 

then exported back to the network location where other members of the project team could 

use them for analysis and modelling. 

UKMO Weather station data was provided with a single file for each day across all weather 

stations. This data was converted into a ‘one file per weather station’ format so that time-series 

weather for each outbreak/planting location could be determined.  

Although data preparation and pre-processing took a significant amount of time, the project 

progressed rapidly with the analyses once this was complete. 

ArcGIS analyses 

We used ArcGIS Pro 2.4 (Esri (UK) Ltd, Aylesbury) and its geoprocessing tools to analyse 

space and spacetime patterns of late blight incidence. All coordinates and map outlines are 

shown projected to the British National Grid, with measurement units in metres. Analyses were 

performed on the outbreak data as a whole (total incidence) and various subsets of the data: 

the 10th and 20th percentiles of late blight outbreaks by reporting date (i.e. early outbreaks, 

henceforth referred to as early10 and early20), and outbreaks corresponding to pathogen 

genotypes 13_A2, 6_A1, 8_A1, 36_A2, and 37_A2. Spatial patterns were evaluated using 

choropleth maps (colour-coded maps showing the count per postcode district), the Optimized 

Hot Spot Analysis tool, and the Kernel Density tool. Risk of spatial spread of disease was 

evaluated using the Optimized Outlier Analysis tool, and the velocity of spatial spread using 

the Standard Distance tool. Spacetime patterns were characterised using the Emerging Hot 

Spot Analysis tool.  

Optimized Hot Spot Analysis (OHSA) 

The OHSA tool from the ArcGIS Spatial Statistics Toolbox was used to identify statistically 

significant spatial clusters of high (hot spots) and low incidence (cold spots) in various subsets 

of the late blight outbreak data: all outbreaks, early outbreaks, and genotypes 13_A2, 6_A1, 

8_A1, 36_A2, and 37_A2. Data from the entire study period (20032018) were analysed 

together to produce maps showing the overall risk across GB.  

The tool identifies statistically significant hot- and cold spots using the Getis-Ord Gi* statistic. 

The outputs of OHSA are z-scores (Gi*) and p-values. High z-scores indicate statistically 

significant spatial hot spots, and low z-scores indicate cold spots. The p-value is the probability 

that a random process formed the observed spatial pattern. When p-values are smaller than 

the required level of significance, the null hypothesis, which is complete spatial randomness, 

can be rejected. 

The OHSA can be used to show where postcodes with a high or low number of sampled 

outbreaks cluster spatially. A postcode with a high number of sampled blight outbreaks is 

interesting but may not be a statistically significant hot spot. For a postcode to be a statistically 
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significant hot spot, the postcode will have a high number of observations and be surrounded 

by other postcodes that also have high values. The local sum of observations for a postcode 

and its neighbouring postcodes is compared proportionally to the sum for all postcodes. If the 

local sum is very different from the expected local sum, and if that difference is too large to be 

the result of random chance, it is considered statistically significant. Postcodes with large 

positive and statistically significant local Gi* values are hot spots, whereas postcodes with 

large negative and statistically significant values are cold spots.  

The OHSA tool interrogates the data in order to determine settings that will produce optimal 

hot spot analysis results; it automatically aggregates incident data into weighted features, 

identifies an appropriate scale of analysis, and corrects for both multiple testing and spatial 

dependence. The output maps produced when performing OHSA with point data show every 

late blight outbreak location in the FAB dataset, with individual points colour-coded according 

to the level of clustering for the subset of data under analysis. Note that the OHSA for total 

incidence (all outbreaks) was performed by aggregating the point data into counts per 

postcode district containing >1ha of potato grown commercially. This was necessary as the 

tool requires variation in the values under analysis, i.e., if all points are being analysed, they 

must be aggregated into counts or analysed with respect to some other covariate.  

Kernel Density Estimation (KDE) 

Kernel density estimation (KDE) was used to provide a smooth geographic interpolation of the 

distributions of genotypes 13_A2, 6_A1, 8_A1, 36_A2, and 37_A2 in various growing seasons 

(2006-2017). The sampling intensity was insufficient to include 2003-2005. The resultant maps 

facilitate a visual analysis of change in the spatial distribution of pathogen genotypes from one 

growing season to the next and highlight areas where competition among genotypes, or other 

factors, results in a change in the predominant lineage.  

KDE is a well-established non-parametric method of estimating the probability density function 

(PDF) of a finite dataset. It is non-parametric because it does not assume any underlying 

distribution for the data. KDE calculates the density of events around each observation by 

assigning a kernel function to every datum that weights the distances to other points in the 

feature space. The result is a smoothly tapered surface fit to each point. Each kernel has a 

bandwidth (smoothing) parameter that controls the size of the neighborhood around each 

datum. Larger values produce a smoother, more generalized density raster whereas smaller 

values produce a raster that shows more detail. We used a value of 75 km for all KDE analyses 

to produce smoother, generalized patterns. The PDF is then produced by summing the local 

contributions of the kernels and dividing by the number of observations to ensure that it 

satisfies the required properties of a PDF.  

Optimized Outlier Analysis (OOA) 

This tool also identifies statistically significant hot spots and cold spots, but unlike the OHSA 

it also identifies high and low outliers within the data. Clustering is assessed using a different 

statistic than the OHSA, namely Anselin Local Moran's I index, and z-scores and p-values are 

produced as described above. Whereas the OHSA identifies three types of geographical class, 

i.e. hot spots, cold spots, and insignificant spots, this analysis identifies five types of 

geographical class. On the one hand, it identifies postcode districts that have either high or 

low values of incidence in concordance with their surroundings (high-high, low-low). On the 

other, the analysis identifies anomalous areas where a postcode district has a value that is 

very different from its neighbours, whether much higher (high-low) or lower (low-high). There 

are also cases where no associations can be made. The OOA was performed on the entire 

dataset (all outbreaks, 2003-2018) using postcode districts as the basic geographic unit. 
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Postcode districts containing no commercial crops were excluded from the analyses to confine 

results to potato production areas only. The resultant map is used to assess the overall risk of 

spatial spread of late blight among postcode districts containing >1ha of potato grown 

commercially.  

Standard Distance and Directional Distribution tools 

The standard distance is a useful statistic as it measures the compactness of a distribution 

and provides a single value representing the dispersion of features (outbreaks) around the 

mean centre of the distribution. The value is a distance, so the compactness of a set of 

outbreaks can be represented on a map by drawing a circle with the radius equal to the 

standard distance value. The user can specify the desired radius (in standard deviations) of 

the standard distance circle. We used three standard deviation polygons so that the circles 

would cover approximately 99 percent of the outbreaks.  

In this study the standard distance is used to calculate a proxy measure for the velocity of 

spatial spread for the two newly introduced clones 36_A2 and 37_A2. These were chosen as 

they are of great concern to the potato industry due to their aggressiveness (36_A2) and 

insensitivity to fluazinam (37_A2). Furthermore, there is a defined focal type spread over the 

last few growing seasons, as opposed to other genotypes that are well established and widely 

dispersed across GB. This allowed us to track their initial appearance and subsequent recent 

expansion into surrounding potato areas.  

The difference in standard distance values (three standard deviation circle) for the distribution 

of outbreaks at the beginning and end of a growing season, divided by the time elapsed, was 

used as a proxy measure for the velocity of spatial spread: 

𝑣𝑒𝑙 =  
𝑆𝐷last − 𝑆𝐷first

𝑡2 − 𝑡1
= km wk−1 

where SD is standard distance, and t is time in weeks. Note that the Standard Distance tool 

requires a minimum of three points, therefore SDfirst and t1 were calculated using the first three 

outbreaks reported, and SDlast and t2 using the final distribution of outbreaks for that growing 

season. Further note that SD is the radius of a circular polygon that is three standard 

deviations of the standard distance circle, thereby covering approximately 99 percent of the 

outbreaks in each distribution. 

A similar tool called the Directional Distribution (Standard Deviational Ellipse) was used to 

summarise the central tendency, dispersion, and directional trends of the distributions of 

genotypes 13_A2, 6_A1, 8_A1, 36_A2, and 37_A2 over the whole study period. It differs from 

the Standard Distance tool in that it calculates the standard distance separately in the x- and 

y-directions. This produces an elliptical as opposed to circular polygon that allows you to see 

if the distribution of outbreaks is elongated and hence has a particular orientation. 

Emerging Hot Spot Analysis (EHSA) 

The emerging hot spot analysis (EHSA) is similar to the OHSA but is used to identify temporal 

trends in the clustering of incidence (i.e., spacetime patterns). It finds new, intensifying, 

diminishing, and sporadic hot and cold spots. First, the outbreak data were organised into a 

spacetime cube (STC). The STC aggregates the data into location and time step bins. For the 

work here, the location bins were defined by the postcode districts (polygons containing >1ha 

of potato grown commercially), whereas the time step was chosen as 1 year. This means that 

each cell in the STC represents the number of sampled outbreaks (or outbreaks by genotype) 

for a given postcode in each year. As there are late blight observation data from 2003-2018 
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(i.e. for 16 years) and there are 2736 postcode districts in the UK, the total number of bins in 

the STC is 43776. 

Whereas the OHSA automatically creates weighted features from incident counts, here the 

weights depend on how the spatial and temporal relationships are defined. The parameter 

values for Neighbourhood Distance and Neighbourhood Time Step define the extent of each 

bin’s neighbourhood in space and time. For this study, a fixed neighbourhood distance band 

and a fixed neighbourhood time step were assumed. The fixed distance band values were 

calculated using the same method employed by the OHSA tool. First, the Incremental Spatial 

Autocorrelation tool was used to perform the Global Moran's I statistic for a series of increasing 

distances, measuring the intensity of spatial clustering for each distance. At some particular 

distance the intensity of clustering typically peaks, reflecting the distance where the spatial 

processes promoting clustering are most pronounced. If no peak distance were found, the 

spatial distribution of outbreaks was analysed to compute the average distance that would 

yield K neighbours. K was computed as 0.05 * N, where N is the number of outbreaks being 

analysed. K was adjusted so that it was never smaller than three or larger than 30. If the 

average distance that would yield K neighbours exceeded one standard distance, the scale of 

analysis was set to one standard distance. This produced distance bands of 36.9 km for 

early10, early20, total incidence, and genotypes 13_A2, 36_A2 and 37_A2. The distance 

bands for 6_A1 and 8_A1 were both 44.8 km. Although the primary interest was in the temporal 

trend of incidence clustering between growing seasons (a 1 year time step), preliminary 

analyses showed that a neighbourhood time step of 2 years gave superior results for all 

outbreaks, early10, early20, and genotype 6_A1. This was due to large inter-annual variation 

in outbreak distributions across GB, e.g., a ‘good blight year’ followed by a ‘bad blight year’. A 

neighbourhood time step of 6 years was used for genotypes 8_A1 and 13_A2, due to the 

relatively low frequency of 8_A1 throughout the study period, and of 13_A2 in the latter half of 

the dataset. A neighbourhood time step of 3 months was used for genotypes 36_A2 and 

37_A2, as their outbreak distributions were relatively concentrated in space and time. 

Once the STC is created and the spatial and temporal relationships defined, the EHSA is 

performed using a combination of two statistical measures: (1) the Getis-Ord Gi* statistic is 

used to evaluate the location and degree of spatial clustering (similar to the OHSA); and (2) 

the Mann-Kendall test evaluates the temporal trend in that clustering over time.  

First, the Getis-Ord Gi* statistic is calculated for each spacetime bin. Note that whereas the 

hot spot analysis above only considered spatial neighbours for the calculation of the Gi*, the 

emerging hot spot analysis considers neighbouring bins in both space and time when 

calculating the Gi* statistic. The computed Gi* statistic can again be interpreted as Z-scores 

and p-values for each bin that tell you whether the number of outbreaks in a given bin is 

statistically clustered compared to the number of outbreaks in the neighbouring bins (in space 

and time). Positive Z-scores above 1.96 correspond to statistically significant hot spots and 

negative z-scores below -1.96 correspond to statistically significant cold spots.  

Secondly, the Mann-Kendall statistic is used for each location with data to test whether a 

statistically significant temporal trend (and what type of temporal trend) exists over the whole 

16-year (2003-2018) time series of z-scores from the Getis-Ord calculation above. Based on 

the resulting temporal trend z-scores and p-values, and the hot spot z-score and p-value for 

each bin, each postcode district is categorised as follows (in each case, the Hot (Cold) notation 

means it refers to either type of spot): 

 No Pattern Detected: Does not fall into any of the hot or cold spot patterns defined below. 
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 New Hot (Cold) Spot: A location that is a statistically significant hot (cold) spot for the final 

time step and has never been a statistically significant hot (cold) spot before. 

 Consecutive Hot (Cold) Spot: A location with a single uninterrupted run of statistically 

significant hot (cold) spot bins in the final time-step intervals. The location has never been a 

statistically significant hot (cold) spot prior to the final hot (cold) spot run and less than ninety 

percent of all bins are statistically significant hot spots. 

 Intensifying Hot (cold) Spot: A location that has been a statistically significant hot (cold) spot 

for ninety percent of the time-step intervals, including the final time step. In addition, the 

intensity of clustering of high (cold) counts in each time step is increasing overall and that 

increase is statistically significant. 

 Persistent Hot (Cold) Spot: A location that has been a statistically significant hot (cold) spot for 

ninety percent of the time-step intervals with no discernible trend indicating an increase or 

decrease in the intensity of clustering over time. 

 Diminishing Hot (Cold) Spot: A location that has been a statistically significant hot (cold) spot 

for ninety percent of the time-step intervals, including the final time step. In addition, the 

intensity of clustering in each time step is decreasing overall and that decrease is statistically 

significant. 

 Sporadic Hot (Cold) Spot: A location that is an on-again then off-again hot (cold) spot. Less 

than ninety percent of the time-step intervals have been statistically significant hot (cold) 

spots and none of the time-step intervals have been statistically significant cold (hot) spots. 

 Oscillating Hot (Cold) Spot: A statistically significant hot (cold) spot for the final time-step 

interval that has a history of also being a statistically significant cold (hot) spot during a prior 

time step. Less than ninety percent of the time-step intervals have been statistically significant 

hot (cold) spots. 

 Historical Hot (Cold) Spot: The most recent time period is not hot (cold), but at least ninety 

percent of the time-step intervals have been statistically significant hot (cold) spots.  

An EHSA was performed on the entire dataset, early outbreaks, and outbreaks corresponding 

to genotypes 13_A2, 6_A1, 8_A1, 36_A2, and 37_A2.  

Modelling 
Model analysis of early outbreaks 

A suite of 24 machine learning classification techniques were developed and tested for their 

ability to predict early outbreaks of disease, using MATLAB Version R2020a. The goal was to 

develop an accurate model and use it to identify the most important variables for prediction, 

i.e., the principle driving factors associated with the occurrence of early outbreaks. 

Classification is a technique where observational data are categorised into a given number of 

classes, and the main goal is to identify the category/class of new, unseen data. Classification 

algorithms learn from the input values given for training and automatically generate a model 

to predict the class labels/categories for the new data. The suite of 24 algorithms included 

numerous types of Decision Tree, Support Vector Machines, Naïve Bayes algorithms, K-

Nearest Neighbour classifiers, and various ensemble methods, e.g., Bagged Trees and 

Boosted Trees. A description of these techniques is beyond the scope of this report, but the 
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interested reader can download an excellent reference ebook entitled “Machine Learning 

Yearning” by Andrew Ng (https://www.deeplearning.ai/machine-learning-yearning/) 

The early outbreak class labels were provided by the Optimised Hot Spot Analysis (OHSA) described 

above. OHSA was used to categorise each early outbreak (and other subsets of the FAB data) as 

belonging to one of seven different classes of spatial cluster: -3 (Cold Spot – 99% Confidence), 

-2 (Cold Spot – 95% Confidence), -1 (Cold Spot – 90% Confidence), 0 (non-significant), 1 (Hot 

Spot – 90% Confidence), 2 (Hot Spot – 95% Confidence) or 3 (Hot Spot – 99% Confidence). 

The model inputs were weather data derived from the HADUK-Grid dataset of key UK climate 

variables (Hollis, et al. 2019). The variables temperature, relative humidity, sunshine duration 

(hours), wind speed and precipitation at 1km resolution were extracted and averaged over the 

potato growing season (May 1-October 31) and then averaged again over the duration of the 

study period (2003-2018). The mean value of each variable was then calculated per postcode 

district. The aim was therefore to develop a machine learning algorithm that can predict 

patterns of low or high incidence of early outbreaks from geographic variation in climate. 

The data was split into training (80%) and test (20%) data using stratified sampling. Bayesian 

optimization was combined with a 5-fold cross-validation technique to train and tune the 

models. The optimal (tuned) models were then tested for their ability to predict the classes of 

the (unseen) held-out test data. Only the results of the most accurate algorithm are reported. 

The importance of each weather variable for prediction was estimated using the MATLAB 

procedure PREDICTORIMPORTANCE. 

Model analysis of total incidence 

A neural network model was developed to estimate risk of blight under different conditions. 

This kind of model can be used to estimate local environmental conditions based on spatially 

variable factors such as topography and climate (e.g. Aitkenhead et al., 2013; Aitkenhead & 

Coull, 2016; Aitkenhead & Coull, 2019). The model inputs included the weather, topographic, 

soil and geological data along with planting and local outbreak data. The model output was a 

single value ranging from 0 (no outbreak) to 1 (outbreak). ‘No outbreak’ data was produced 

using the planting data examples where no outbreak occurred, with random points during the 

growing season selected to provide a range of weather conditions. This was done because to 

train a predictive model of any kind, negative examples are needed in addition to positive ones 

(otherwise the model simply assumes that an outbreak will always occur). 

Training was carried out using the backpropagation neural network approach, by which the 

model is repeatedly given randomly selected examples from the training dataset, and its output 

compared to the actual outbreak value (0 or 1) for that example. An error minimisation 

approach adjusted network connection weights based on the difference between ‘target’ and 

‘actual’ model outputs, to reduce this difference. After 100,000 training examples, error 

minimisation reached a flat line, indicating no further possible improvement to the model. The 

trained model could then be used as predictive tool to estimate blight risk for any given set of 

input data. 

Model training also included a 10-fold cross-validation approach, in which the following steps 

were applied: 

1. The data was split into 13 equally sized subsets, with outbreak/no outbreak data selected at 

random for populating these subsets. 

2. Three of these subsets were ‘held back’ for final model validation. 

3. For each of the 10 remaining subsets, a neural network model was trained using 9 subsets, 

with the 10th subset (which varied for each of the ten models) used for testing data. 

https://www.deeplearning.ai/machine-learning-yearning/
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4. Once all 10 neural network models were trained, they were used as a ‘consensus’ model – the 

outputs of all 10 models were used to produce an average (mean) output. This approach has 

been demonstrated in machine learning to produce more robust and accurate estimation 

models that using a single-model approach. 

The model was validated using data in the 3 subsets held back from the training process, 

providing a statistically reliable accuracy assessment. The model also incorporated 

information about local and neighbouring outbreaks over the prior 18 months, and so can 

adjust to information over the growing season if there are nearby outbreaks. Input variable 

values were normalised prior to modelling, so that the range presented to the model during 

training was in the range [0, 1] for all variables. This was done to prevent input variables with 

a larger range of values having more apparent importance in the model (i.e. elevation ranges 

from 0 to 1400 metres, while slope varies from 0° to a theoretical maximum of 90°). 

Once the model was trained and tested, a sensitivity analysis was performed to determine the 

impact of individual input variables and assess their relative importance as drivers of late blight 

outbreak risk. This was done by calculating the rate of change of the output variable, in 

proportion to changes in each input variable by a small amount when all other inputs are fixed. 

Rates of change can be positive or negative. 

Each neural network model was activated once for each training data point and the RMS value 

of rate of change determined across all training data points. The consensus model (all 10 

neural networks) was used for this, instead of evaluating each model separately. With 118 

input nodes (1 for each input variable), this gave 118 sensitivity relationships. These are 

presented in graphs that give the sensitivity for each type of input data. It is important to note 

that the sensitivity value in each case is a proportional rate of response. For example, a value 

of 0.1 indicates that for a unit change of value in that input variable, the output will vary on 

average by 0.1 of the input variation.  

Model analysis of pathogen population change 

Only two pathogen genotypes were available in sufficient numbers in the FAB outbreak data 

to facilitate analysis via machine learning: genotypes 13_A2 and 6_A1. The problems of small 

data are numerous but mainly revolve around overfitting. Overfitting occurs when a model 

adjusts excessively to the training data, seeing patterns that do not exist, and consequently 

performing poorly in predicting new data. In addition, outliers and noise become a real issue 

in small-data. The same suite of 24 machine learning classification techniques used to model 

early outbreaks were tested for their ability to predict distributions of 13_A2 and 6_A1. The 

goal was to develop an accurate model and use it to identify the most important variables for 

prediction, i.e., the principle driving factors associated with the occurrence of different 

genotypes. The same HADUK-Grid weather variables described above were used as model 

inputs, although values were averaged over 20062018 as genotype information was not 

available in the first 3 years of the FAB outbreak data. Two different modelling approaches 

were attempted that utilised the pathogen genotype data at different levels of spatial 

aggregation: models were developed to predict the genotype of individual outbreaks, and 

models were developed to predict the dominant genotype in each postcode district. The latter 

involved counting the number of outbreaks of each genotype in each postcode district. The 

models were trained, tuned, and tested as described above for the analysis of early outbreaks.  
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Results 
Deliverable 1: occurrence of early outbreaks of late blight 

To illustrate where the early outbreaks of late potato blight occurred the 5th, 10th and 20th 

percentiles of blight outbreaks (by reporting date) over the entire study period have been 

mapped in Figure 1.  

Figure 2 is a map of the (median) day-of-year (i.e. days since January 1st) of first blight 

outbreak in each postcode district. In the plot, red postcodes are the earliest occurring 

outbreaks and yellow are the latest occurring outbreaks. A cut-off (colour bin) was used for 

every 5% of these days of first outbreak, meaning that some bin sizes cover more days than 

others; the very first outbreak occurred at day 46 (i.e. mid-Feb), the first 5% of the early 

outbreaks occurred between days 46 and 146 (mid-May) and so on. All ‘first outbreaks’ 

occurring after August 1st were grouped into one bin (days 213-365). 

There is no clear pattern in this simple plot per postcode district, although it appears that most 

of the redder (earlier first outbreak) areas are along the coast and in the south (East Anglia 

and East Midlands) and more of the yellow (later first outbreak) areas are in inland and further 

north. This would indicate that first outbreaks tend to occur in parts of Great Britain that are 

warmer early in the year and would agree with the general understanding that temperature 

plays an important role in outbreak occurrence. There is further analysis of the controlling 

factors of outbreaks using GIS and spatiotemporal analysis tools, reported later in this report.  
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Figure 1. Choropleth maps of the 5th (left), 10th (middle) and 20th (right) percentiles of the blight outbreak dates of every year from 2005 to 

2018. The colour scale indicates the number of sampled outbreaks per postcode district and grey zones are postcode districts in which >1 

ha of potato was grown commercially.
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Figure 2. Median day of year of first late blight outbreak mapped by postcode district. Red 

indicates areas where outbreaks occur earlier in the year, on average. Yellow indicates areas 

where outbreaks tend to occur later. 

Figures 3 and 4 show output from the Optimised Hot spot Analysis tool, showing statistically 

significant spatial clusters of high (hot spot) and low (cold spot) values of incidence for early 

outbreaks, 2003-2018. This shows the pattern and scales at which early outbreaks occur in 

GB. Hot spots of early outbreaks (10th and 20th percentile) were generally found in the south 

of England and Wales, particularly near the coast, whereas a large cold spot extends across 

the production regions of Scotland. The 10th percentile hot spots mainly relate to early potato 

growing regions in southwest England, Wales and to some extent, Scotland whereas the 20th 

percentile includes larger areas of potato production in the southwest and southeast of 

England. The local (Figure 3) or more extensive (Figure 4) cold spot in Scotland was 

somewhat unexpected given the results of the choropleth mapping (Fig. 1), which shows a 

few districts with high counts of early outbreaks in the Fife and Angus regions. However, these 

few regions are surrounded by neighbouring districts with no early outbreaks, resulting in the 
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observed cold spot. Overall, the results indicate a clear role of climate in occurrence of early 

outbreaks.  

 

Figure 3. Statistically significant hot and cold spots derived by OHSA from the 10th percentile 

of late blight outbreaks by reporting date, 2003-2018. Inverse distance weighting was used to 

interpolate a coloured raster surface from the OHSA points.  
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Figure 4. Statistically significant hot and cold spots derived by OHSA from the 20th percentile 

of late blight outbreaks by reporting date, 2003-2018. Inverse distance weighting was used to 

interpolate a coloured raster surface from the OHSA points.  

Early outbreaks were further subdivided according to reporting year to analyse change in 

spatial distributions over time; however the data were insufficient (too few instances) for robust 

analysis and results were potentially misleading (i.e., a single outbreak could seem 

disproportionately significant within a small dataset). We therefore performed an emerging hot 

spot analysis (EHSA) to quantify change in early outbreak distributions over time. Similar 

problems occurred when analysing total incidence and pathogen genotype by year, and 

alternative techniques were again used.  
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Compared to the many hotspots defined over the whole data set (OHSA), the spacetime EHSA 

revealed fewer hot spots of early outbreaks that tended to be sporadic: locations that are on-

again off-again hot spots in Kent, southwest England and Scotland (Fig. 5, Fig. 6). The cluster 

of sporadic and consecutive hot spots (uninterrupted runs of hot spots in the final time steps) 

of early outbreaks in the Angus / Aberdeenshire regions may be an indication that the warming 

climate could result in an increased frequency of early outbreaks in Scotland but could also 

reflect a bias due to an sampling regime that is more intensive than in other regions.  

 

 

Figure 5. Space-time patterns of early outbreaks of late blight, derived by EHSA from the 10th 

percentile of late blight outbreaks (by reporting date), 2003-2018. Postcode districts with no 

reported commercial potato crops are shaded pale grey and were excluded from the analysis. 
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Figure 6. Space-time patterns of early outbreaks of late blight, derived by EHSA from the 20th 

percentile of late blight outbreaks (by reporting date), 2003-2018. Postcode districts with no 

reported commercial potato crops are shaded pale grey and were excluded from the analysis. 

 

Great Britain is well-known for the geographic variability of its weather, and this is reflected in 

the mapping of the long-term growing-season climate averages derived from the HADUK-Grid 

dataset (Fig. 7). 
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Figure 7. Weather data derived from the HADUK-Grid dataset, averaged over the potato 

growing season (May 1-October 31) and over the study period (2003-2018): (a) temperature, 

(b) relative humidity, (c) precipitation, (d) sunshine duration in hours, and (e) wind speed. 

Values range from blue (low) to red (high).  
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Of the suite of 24 machine learning algorithms tested, a ‘Fine Decision Tree’ proved to be the 

most accurate in predicting the classes of spatial clustering of early outbreaks (early20) 

derived by OHSA (Fig. 4). The model classified 2008 cases of the training set into the 

seven different types of spatial cluster with a training accuracy of 94.6%, and 501 held-

out test cases with a testing accuracy of 91.2%. The similarity in training and test 

accuracies indicates that overfitting was not an issue. Note that nine cases were 

missing the required weather variables and were omitted from the analyses. A 

confusion matrix shows the spatial cluster classification from the OHSA (true class) 

versus the predicted class from the model for the held-out test data (Fig. 8). A 

confusion matrix is a cross-tabulation formed by the overall agreement-disagreement, 

where the row and column labels of the matrix represent observed and predicted 

classes, respectively, and each cell contains the corresponding number of test cases. 

Thus, the agreement values correspond to the diagonal cells, whereas the 

disagreement values correspond to the off-diagonal cells. The column summary 

displays the number of correctly and incorrectly classified observations for each 

predicted class as percentages of the number of observations of the corresponding 

predicted class, i.e., the positive predictive values and false discovery rates. The row 

summary displays the number of correctly and incorrectly classified observations for 

each true class as percentages of the number of observations of the corresponding 

true class, i.e., the true positive rates and false positive rates. 

 

 

Figure 8. Confusion matrix and associated positive predictive values / false discovery rates (column 

summary), and true positive rates / false positive rates (row summary), for predictions of the decision 

tree on the test data.  
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The model was retrained using all the data to determine the importance of each weather 

variable in predicting the type of spatial cluster (Fig. 9). The importance of each variable was 

determined using the PREDICTORIMPORTANCE function of MATLAB. The results provide 

evidence that temperature is the principle driving factor for early outbreaks, followed by 

precipitation and sunlight. It is interesting to note that the climate maps for temperature (Fig. 

7a) and sunshine duration (Fig. 7d) closely match the patterns of spatial clustering of early 

outbreaks (Fig. 4).  

 

 

Figure 9. Importance of climate variables in predicting clusters of early outbreaks of potato late blight.  
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Deliverable 2: risk and rate of spatial spread of late blight 

Figure 10 shows results of using Optimized Outlier Analysis within potato sectors, using 

default settings to identify the appropriate scale of analysis. This shows whether the level of 

similarity (clustering of either high or low values) or dissimilarity (outliers: high-low, low-high) 

in total incidence (2003-2018) is more pronounced than expected for a random distribution. 

Sectors in High-High or Low-High clusters are at risk of spread of disease from neighbouring 

(High) sectors, whereas those in Low-Low or High-Low are at less risk of spread of disease 

from neighbouring (Low) potato sectors.  

 

Figure 10. Output from the Optimised Outlier Analysis tool, showing statistically significant variation 

between observations and random variation. Postcode districts with no reported commercial 

potato crops were excluded from the analysis. 



25 
 

To determine a velocity of spread for 37_A2, data from only 2017 and 2018 were used as 

there were too few observations in 2016 to include in the analysis. We identified a ‘western 

focus’ of 37_A2 in the West Midlands where the first outbreak was reported (2016), and where 

the outbreaks were most concentrated. There were additional outbreaks recorded in East 

Anglia and the South East and one up in Auchincruive in subsequent years, but it is likely 

these originated from different sources of primary inoculum as opposed to dispersal of 

inoculum outwards from the West Midlands focus. The maps (Figs. 11 & 12) shows the 

Standard Distance for the first week in 2017 and 2018 where 37_A2 was recorded (inner light 

blue circle) and the Standard Distance for the final week when 37_A2 was recorded. The 

velocity of spatial spread for 37_A2 in 2017 was: 

𝑣𝑒𝑙 =  
𝑆𝐷last − 𝑆𝐷first

𝑡2 − 𝑡1
=

124,701 m − 96,043 m

9 weeks
= 3,184 m wk−1 

This was repeated for 2018: 

𝑣𝑒𝑙 =  
𝑆𝐷last − 𝑆𝐷first

𝑡2 − 𝑡1
=

137,134 m − 26,594 m

8 weeks
= 13,817 m wk−1 

This analysis was repeated for genotype 36_A2 for 2018 only (Fig. 13), as there were 

insufficient data for 2017: 

𝑣𝑒𝑙 =  
𝑆𝐷last − 𝑆𝐷first

𝑡2 − 𝑡1
=

298,033 m − 20,884 m

16 weeks
= 17,321 m wk−1 
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Figure 11. Standard Distance map representing the spread of genotype 37_A2 in the first and final 

weeks of the epidemic in 2017. 
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Figure 12. Standard Distance map representing the spread of genotype 37_A2 in the first and final 

weeks of the epidemic in 2018. 
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Figure 13. Standard Distance map representing the spread of genotype 36_A2 in the first and final 

weeks of the epidemic in 2018. 
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Deliverable 3: risk of late blight over time 

In the following, historical maps of late blight occurrence across GB are presented to illustrate 

sampling intensity in relation to the density of potato cultivation and to identify areas at high or 

low disease risk.  

Figure 14 (left) shows the total number of sampled late blight outbreaks within each postcode 

district from 2005-2018 and ranges from 1 to 60. There are many districts that have been 

sampled more intensively than others. Particularly notable are the east coast of Scotland 

(especially Fife, Angus and Aberdeenshire), parts of East Anglia, Kent the Midlands and the 

west coast of Wales.  

Figure 14 (right) shows the mean area of commercially grown potatoes within each postcode 

district, normalised by the size of the postcode (i.e. the map shows the percentage of the 

postcode district area used for potato growing). The map shows where the potato growing 

intensity is highest and can be considered an indicator of areas more likely to be vulnerable 

to blight outbreaks. Since 2005, the potato growing intensity has been highest along the east 

coast of Scotland (especially in the regions of Fife and Tayside) and in East Anglia, East and 

West Midlands as well as in the early crops in southwest England, Wales and, to a lesser 

extent, Scotland.  

Although sampling intensity varies according to postcode district there is a clear association 

between the potato crop distribution data and the number of sampled potato blight outbreaks. 

Although there are many unsampled postcode districts (grey in Fig. 14 left) these are mostly 

low potato density areas and the highest concentrations of blight sampling is recorded in areas 

with the highest potato growing density. Some deviations from this pattern are related to blight 

outbreaks sampled in 57 postcode districts where potatoes are not grown commercially. A 

total of 202 blight outbreaks were sampled in these 57 districts with some particularly 

clustering in some postcode districts in Wales (e.g. LL33, LL53, LL55, LL57 and SA48). Such 

outbreaks are predominantly from gardens, allotments and trials and some from tomato crops, 

but these outbreaks do not detract from the main findings as areas with <1 ha of commercial 

potato growing have been masked. A map of the total number of outbreaks from 2005 to 2018 

normalised by potato density is also shown (Fig. 15). This normalisation in which the number 

of outbreaks was divided by the area of commercial potato planted (in square kilometres) 

within each postcode district indicates a more balanced sampling across the GB industry 

compared to the non-normalised data (Fig. 14).  
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Figure 14. Left: Total number of sampled late potato blight outbreaks within each postcode district 

over the time period 2005-2018. Grey areas are postcodes where potatoes are grown, but where blight 

outbreaks were not reported. Right: Annual average area of potatoes grown within each postcode 

district over the time period 2005-2018, normalised by the size of the postcode (potato density). 
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Figure 15. Total number of late potato blight outbreaks normalised by the annual average area of 

potatoes grown within each postcode district over the time period 2005-2018. 

Analysis using the Optimised Hot Spot Analysis tool revealed statistically significant spatial 

clusters of high and low values of incidence for all outbreaks (total incidence), 2003-2018 (Fig. 

16). This shows the pattern and scales at which late blight incidence was sampled across GB 

crops. Hot spots were mainly found in the Angus, Tayside, Fife and Aberdeenshire in Scotland, 

and in East Anglia and Kent in England, all areas of intense potato cultivation. No cold spots 

were identified.  
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Figure 16. Statistically significant hot and cold spots derived by OHSA for all reported late 

blight outbreaks, 2003-2018. Postcode districts with no reported commercial potato crops are 

shaded pale grey and were excluded from the analysis. 
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When analysed over space and time, the EHSA showed that the hot spots identified by the 

OHSA were of three types: sporadic hot spots that appear then disappear over time, 

consecutive hot spots where there is a run of statistically significant results in the final years, 

and new hot spots that are statistically significant in the final year analysed only (Fig. 17). The 

agreement between the OHSA and EHSA indicates that these regions are particularly 

problematic for late blight, either every other year or in consecutive years. This analysis over 

time emphasises the production area in the English midlands as a greater risk than the OHSA 

analysis alone.  

 

 

Figure 17. Space-time patterns of late blight incidence derived by EHSA, 2003-2018. Postcode 

districts with no reported commercial potato crops are shaded pale grey and were excluded 

from the analysis. 
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Modelling 

The neural network model developed to estimate risk of blight under different conditions 

generated a Receiver Operating Characteristic (ROC) curve (Fig. 18), which has an AUC 

(Area Under Curve) of 0.904. The highest accuracy (correct identification of true/false for late 

blight outbreak) is achieved with a threshold of 0.53 and is 82.4% with a True Positive rate of 

79.7% and False Positive rate of 15.1%. The distribution of points shown in this graph 

demonstrate the True Positive and False Positive values obtained for different threshold 

values (in the range 0-1) above which the model output was taken to indicate an outbreak of 

Late Blight. An ROC that was a straight line from [0,0] to [1,1] would indicate a model no better 

than a random coin toss, while an ROC in which the curve reaches the top-left corner of the 

graph would indicate perfect prediction. 

In situations where growers might prefer a higher True Positive rate (i.e. making sure that 

outbreaks are more often predicted accurately), this can be traded off against a higher False 

Positive rate. For example, to ensure that outbreaks are predicted 90% of the time, a model 

threshold of 0.33 could be used which would result in a False Positive rate of 34.0%. It is 

possible that growers would prefer this as the cost of ‘wasted treatment’ would be offset by 

reduced losses from outbreaks. 

 

Figure 18. Receiver Operating Characteristic for model estimating presence/absence of late blight. 

 

A sensitivity analysis of the trained model was carried out to determine the impact of individual 

input variables. These data are plotted in groupings by topography (Fig. 19), recent weather 

(Fig. 20), geology (Fig. 21), WRB soil class (Fig. 22) and WRB soil diagnostic properties (Fig. 

23). The values given in each graph show the rate of change of model response (from 0 = no 

blight to 1 = blight) in proportion to the rate change in each input variable. Input variables are 

normalised within the range [0, 1]. 
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Of the topographical factors elevation has a moderately negative effect on outbreak risk (i.e. 

lower elevations are more at risk), while slope has a strong impact (postcode districts with, on 

average, steeper slopes are more at risk). Curvature and aspect of the terrain do not show 

strong impacts on risk (Fig. 19). A plot of the weather-related factors (Fig. 20) shows that 

higher windspeed during the previous 28 days decreases the risk of outbreaks moderately. As 

expected, high rainfall, humidity and temperature in the 28 days prior to observation all give 

strong positive responses (i.e. increased risk). The role of different weather factors at different 

times prior to observation of late blight outbreaks is complicated by the fact that the date of 

outbreak initiation was not recorded in the field observations (for obvious reasons). Because 

of this, it is not possible to know if the weather conditions from up to 28 days prior to 

observation were before or after the start of the actual outbreak. 

 

Figure 19. Sensitivity analysis of model by topography variables. AspectN is slope angle away from 

North (i.e. increasing towards the South), AspectE is slope angle from East (i.e. increasing towards the 

West) (it is necessary to have these to avoid a discontinuity in values from 359° degrees to 0°, which 

would cause issues with the modelling). 
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Figure 20. Sensitivity analysis of model by weather variables. Variables are averaged over the periods 

given before the field observation. 

The underlying geological type can have positive or negative effects on late blight outbreak 

probability, but that none of these relationships are particularly strong (Fig. 21). Clay (increase 

in risk), sedimentary intermediate (e.g. sandstone, increased risk), igneous mafic (e.g. basalt, 

increased risk) and organic deposits (i.e. peat, decreased risk) are the strongest observations 

here. 

 

Figure 21. Sensitivity analysis of model by geological type. 
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Figure 22. Sensitivity analysis of model by soil class. 

While most soil types on which potatoes are grown have very little impact on outbreak risk, 

the ‘no soil’ class has a strong positive impact (Fig. 22). This soil class is seen on soil maps 

in urban areas, or in other places where the soil maps state that there is no soil (e.g. bare 

ground). For potato cropping to take place in these locations, soils must be artificially 

developed (e.g. allotments, gardens, raised beds). The Luvisol soil type, which is 

characterised by high clay content at depth, is seen as reducing the likelihood out late blight 

outbreaks. This soil type is common in Norfolk, Suffolk and along the north-east coast of 

England as well as throughout the Midlands. 

The impacts of presence/absence of specific soil characteristics, which are determined 

through the observation of specific features or developmental conditions are plotted in Figure 

23. The two most notable here are Calcaric (contains significant amounts of calcium) and 

Mollic (a feature of nutrient-rich soils with high organic matter and high biological activity), both 

of which cause reduced outbreak risk when present. No other specific features cause major 

differences to the risk of outbreak. Soils with Calcaric and Mollic characteristics generally have 

above-average pH, which may be significant. 
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Figure 23. Sensitivity analysis of soil diagnostic properties. 

 

The results of the modelling work and sensitivity analysis described above, as applied to 

various criteria are mapped to indicate the spatial distribution of risk (Figs. 24-29). The display 

of these maps is slightly different from previous maps in this section because of the underlying 

geographical projection of the data used. Additionally, the mapped data extent lies beyond 

GB, so areas of Ireland and northern France are included (these can be ignored). The 

sensitivity of the model to elevation has been used to produce a map of the impact of elevation 

differences across GB (Fig. 24). As the effect of increasing elevation is reduced outbreak risk, 

the values on the map follow a scale from near zero (red) to strongly negative (blue). So while 

the red areas are ‘higher’ risk than the blue areas, they are still below zero. Areas marked with 

dark blue are high elevation and lie outside existing regions of potato growing. Additionally, 

there are patches of small areas in the Fens that are blank due to the elevation being below 

sea level which prevented the model from running. The risks in this area are however, 

considered similar to the low-lying land surrounding it.  
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Figure 24. Map of contribution of elevation to outbreak risk. 

The same type of outbreak risk mapping but using angle of slope instead of elevation is also 

shown (Fig. 25). As risk is positively associated with slope, areas in the map with steeper 

slopes are colour red for higher values of risk. Again, many of these areas are not in areas of 

potato growing. The three dropped lines in this map are caused by data processing errors 

within the GIS software used to derive slope values for the terrain. 
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Figure 25. Map of contribution of slope to outbreak risk. 

The map of the contribution of geological type to outbreak risk (Fig. 26) has values that lie 

within a narrower range than for Figures 24 and 25 and can be above or below zero depending 

on the geological type present. The north-south variation of values in this map is highly visible. 



41 
 

 

Figure 26. Map of contribution of geology to outbreak risk. 

 

The map of the contribution of soil type to risk (Fig. 27) indicates distinct urban areas which 

follows on from the sensitivity analysis of no-soil types shown above (Fig. 22). Areas of water 

body are also highlighted and can be ignored. Areas of Luvisol with lower risk show up strongly 

in dark blue. We have not provided a map of the effects of soil diagnostic features on modelled 

risk as these values are generally smaller and lie within a narrow range with less meaning. 
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Figure 27. Map of contribution of soil class to outbreak risk. 
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The combined effects of topographic variables, geology and soil type/features are shown using 

a continuous scale from the minimum to maximum values (Fig. 28) and colour-coded by set 

ranges of values (Fig. 29). The issues with missing (below sea-level) data in the maps above 

is also seen in these summed maps. Missing values in East Anglia are, however, all in a 

narrow range on either side of zero. 

 

 

Figure 28. Map of combined contribution of topography, geology and soil to outbreak risk. 
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Figure 29. Category map of combined contribution of topography, geology and soil to outbreak risk. 

All low-lying areas in East Anglia not included in the map are in a narrow range of values around zero. 
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Deliverable 4: genetic makeup and spatial distribution of late blight pathogen 

genotypes 

As shown on the table of sampled outbreaks the frequency of different P. infestans genotypes 

has changed over time. Genotypes 13_A2 and 6_A1 were by far the most common types 

amongst the FAB outbreak data (Table 1). This is followed by genotype 8_A1, which has 

persisted at a relatively low frequency. Some peak and then appear only sporadically (1_A1 

and 2_A2) whereas others appeared late and are in the process of spreading more widely 

(37_A2 and 36_A2). 

 

Table 1: Overview of the number of sampled blight outbreaks by year showing the records of the 10 

most commonly observed genotypes at each outbreak. 

Year All 

Genotypes 

1_A1 2_A1 6_A1 7_A1 8_A1 23_A1 10_A2 13_A2 36_A2 37_A2 

2006 162 20 18 18 5 18 0 11 78 0 0 

2007 280 14 15 50 3 9 1 2 211 0 0 

2008 203 1 3 31 2 8 0 0 181 0 0 

2009 142 0 2 31 2 11 8 1 105 0 0 

2010 82 0 4 20 0 6 4 0 48 0 0 

2011 178 0 0 132 0 11 1 0 25 0 0 

2012 344 4 0 228 3 16 2 0 104 0 0 

2013 66 0 0 29 0 3 0 0 42 0 0 

2014 257 0 1 171 0 8 0 0 84 0 0 

2015 59 1 0 32 0 5 0 0 14 0 0 

2016 171 0 0 111 1 3 5 0 41 0 3 

2017 155 1 0 62 0 5 0 0 17 3 34 

2018 68 1 0 29 0 0 0 0 8 12 17 

Total 2511 42 43 944 16 103 21 14 958 15 54 

 

The Directional Distribution (Standard Deviation Ellipse) tool was used to summarise the central 

tendency, dispersion, and directional trends of the main genotypes of interest across the study period 

(20062018) (Fig. 30). 
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Figure 30. Spatial characteristics of the different distributions of genotypes: the central tendency, 

dispersion, and directional trends (20062018). 

This analysis reveals that genotypes 13_A2, 6_A1 and 8_A1 share a similar orientation, but 

their average dispersions vary slightly in north-south orientation with 8_A1 having the most 

northerly and 13_A2 the most southerly means. This may indicate slightly different responses 

to climate or historical patterns of distribution (Appendix 2). Genotype 37_A2 appears to be 

spreading from the west to the east, whereas up until 2018, genotype 36_A2 was yet to 

become established beyond the southeast of GB. It has since spread northwards to Scotland, 

but the 2019 data is not included in this analysis. 



47 
 

Choropleth (colour-coded) maps were prepared to provide a simple summary of the total 

number of outbreaks in each postcode district for each of the genotypes studied (Figs. 3135). 

They indicate the widespread distribution of 13_A2, 6_A1 and 8_A1 with the latter being at a 

significantly lower frequency. Genotypes 36_A2 and 37_A2, in comparison, remain more 

closely clustered to the postcodes in which they were first sampled. 

 

 

Figure 31. Choropleth map showing a count of all outbreaks of genotype 13_A2 within postcode 

districts containing >1ha potato (grown commercially), 20062018. 
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Figure 32. Choropleth map showing a count of all outbreaks of genotype 6_A1 within postcode districts 

containing >1ha potato (grown commercially), 20062018. 
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Figure 33. Choropleth map showing a count of all outbreaks of genotype 8_A1 within postcode districts 

containing >1ha potato (grown commercially), 20062018. 
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Figure 34. Choropleth map showing a count of all outbreaks of genotype 36_A2 within postcode 

districts containing >1ha potato (grown commercially), 20172018. 
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Figure 35. Choropleth map showing a count of all outbreaks of genotype 37_A2 within postcode 

districts containing >1ha potato (grown commercially), 20162018. 

 

The OHSA provides information on the statistical significance of the clustering of high and low 

values of incidence identified in the above choropleth maps (Figs. 3640). The results differed 

markedly for each of the genotypes studied. Although incidence of genotype 13_A2 was high 

in Scotland in the first half of the study period it declined from 2011 onwards with the 

consequence that the statistically significant hot spots occurred mainly in England and Wales 

(Fig. 36). The converse is true for genotype 6_A1 with hotspots in Scotland and northeast 

England. The drivers of this are not clear but may involve competition between these two 

genotypes or local expansion or collapse of populations (Fig. 37). Genotype 8_A1 was 
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sampled at a lower frequency but appears alongside 13_A2 in Wales and 6_A1 in Scotland, 

albeit in the more south-westerly and northern production regions of Scotland, whereas 6_A1 

dominates along the eastern seaboard (Fig. 38). Genotype 36_A2 has been confined mostly 

to the south-eastern tip of GB since it was first reported in 2017 but is steadily moving 

northwards (Fig. 39). Genotype 37_A2 has spread from the Midlands across to the east and 

southeast of England and northwards into Scotland (in 2018). The incidences were however, 

not sufficiently to produce hot spots beyond the Midlands and Kent (Fig. 40).  

 

Figure 36. Statistically significant hot and cold spots derived by OHSA for genotype 13_A2, 

2006-2018. Inverse distance weighting was used to interpolate a coloured raster surface from 

the OHSA points. 
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Figure 37. Statistically significant hot and cold spots derived by OHSA for genotype 6_A1, 

2006-2018. Inverse distance weighting was used to interpolate a coloured raster surface from 

the OHSA points. 

 

  



54 
 

 

 

Figure 38. Statistically significant hot and cold spots derived by OHSA for genotype 8_A1, 

2006-2018. Inverse distance weighting was used to interpolate a coloured raster surface from 

the OHSA points. 
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Figure 39. Statistically significant hot and cold spots derived by OHSA for genotype 36_A2, 

2017-2018. Inverse distance weighting was used to interpolate a coloured raster surface from 

the OHSA points. 
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Figure 40. Statistically significant hot and cold spots derived by OHSA for genotype 37_A2, 

2016-2018. Inverse distance weighting was used to interpolate a coloured raster surface from 

the OHSA points. 
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The EHSA corresponded well to the OHSA and facilitated an analysis of temporal trends in 

the patterns identified (Figs. 4145). No cold spots were identified, and hot spots were of three 

types: consecutive, sporadic, and new (Table 2). 

Table 2: Summary of Emerging Host Spot Analyses for late blight outbreaks, grouped by genotype, 

20062018. 

 Consecutive 
hot spots 

Sporadic 
hot spots 

New 
hot spots Genotype 

13_A2 35 4 0 
6_A1 50 32 0 
8_A1 34 0 0 
36_A2 16 24 1 
37_A2 72 6 2 

 

The incidence of genotype 13_A2 has been most frequent and consistent in Lancashire and 

East Anglia in recent years, leading to consecutive hot spots in those regions (Fig. 41). 

Whereas the OHSA did not identify a hot spot in the Shropshire region, the EHSA revealed 

four postcode districts in that area where sporadic hot spots occur. The results of the EHSA 

indicate that genotype 6_A1 has become established in the Fife/Tayside/Angus regions of 

Scotland and in Shropshire and East Anglia in England in recent years, leading to consecutive 

hot spots in those areas (Fig. 42). There were many sporadic hot spots in Anglia and Kent, 

indicating that the occurrence of this genotype is quite irregular and variable there. The EHSA 

flags up the broad spread of both these genotypes by around 2011 followed by local transitions 

with complex drivers. Genotype 8_A1 appears to be most prevalent in Scotland, albeit at a 

comparatively low frequency (Fig. 43) and may reflect its later displacement by 13_A2 and 

6_A1. The newly introduced genotypes 36_A2 and 37_A2 appear to be firmly established in 

their centres of establishment in the most recent time steps analysed (Figs. 44 & 45). Of most 

interest to the potato industry are the new hot spots appearing towards the north for both 

genotypes, indicating spatial spread. 
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Figure 41. Space-time patterns of genotype 13_A2 incidence derived by EHSA, 20062018. 

Postcode districts with no reported commercial potato crops are shaded pale grey and were 

excluded from the analysis. 
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Figure 42. Space-time patterns of genotype 6_A1 incidence derived by EHSA, 20032018. 

Postcode districts with no reported commercial potato crops are shaded pale grey and were 

excluded from the analysis. 
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Figure 43. Space-time patterns of genotype 8_A1 incidence derived by EHSA, 20032018. 

Postcode districts with no reported commercial potato crops are shaded pale grey and were 

excluded from the analysis. 
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Figure 44. Space-time patterns of genotype 36_A2 incidence derived by EHSA, 20172018. 

Postcode districts with no reported commercial potato crops are shaded pale grey and were 

excluded from the analysis. 
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Figure 45. Space-time patterns of genotype 37_A2 incidence derived by EHSA, 20162018. 

Postcode districts with no reported commercial potato crops are shaded pale grey and were 

excluded from the analysis. 

To visualise the temporal change in genotype distributions underlying the OHSA and EHSA 

analyses, we performed a KDE analysis to produce continuous surfaces of incidence intensity 

for 13_A2, 6_A1 and 8_A1 for 20062017 (Figs. 46-49). Note that 2010, 2013 and 2015 were 

lower blight intensity years with 82, 68 and 58 outbreaks reported, respectively. We did not 

plot 2018 data as the weather conditions were not favourable for blight and only 63 outbreaks 

were reported. Overall, the results agreed well with the OHSA. 
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Figure 46. Kernel density distributions of late blight incidence showing inter-annual variation 

for genotypes 13_A2, 6_A1, and 8_A1, 20062008.  
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Figure 47. Kernel density distributions of late blight incidence showing inter-annual variation 

for genotypes 13_A2, 6_A1, and 8_A1, 20092011.  
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Figure 48. Kernel density distributions of late blight incidence showing inter-annual variation 

for genotypes 13_A2, 6_A1, and 8_A1, 20122014.  
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Figure 49. Kernel density distributions of late blight incidence showing inter-annual variation 

for genotypes 13_A2, 6_A1, and 8_A1, 20152017.  
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These analyses were useful in illustrating the large degree of variation in the distributions of 

genotypes within years, and within genotypes between years. A marked and rapid spread of 

the 13_A2 and 6_A1 genotypes was observed in the 2007 season from similar epicentres in 

eastern England 2006 (Fig. 38). Genotype 13_A2 established in Scotland early (Fig. 38) and 

was sampled at a high frequency there until after 2011 season when a late epidemic of 6_A1 

dominated crops in Fife and Angus (Fig. 39). The epicentre of the genotype 6_A1 strain was 

slightly further north than 13_A2 which corresponds to findings of 6_A1 in Lincolnshire in 2004 

and 2005 (data not shown). It spread north more slowly and was not established in Scotland 

until 2010. In the years since 2011, a displacement of 13_A2 by 6_A1 was apparent in 

Scotland (Figs. 48 and 49) but to a lesser extend in England and Wales.  

In general, most areas of high intensity did not coincide for the three genotypes within years. 

Given this large variation both within and between years, and the relatively small numbers of 

outbreaks in some years, it was not possible to identify the principle environmental factors 

driving these population shifts. 

Of the suite of 24 machine learning algorithms used for predicting the genotype of FAB 

outbreaks (using only cases of genotype 13_A2 or 6_A1), the highest training accuracy 

attained was 60.7% for a Fine Gaussian SVM (Fig. 50). Tuning the hyperparameters of this 

model to their optimal values only increased the accuracy by eight percent. The situation was 

slightly improved when attempting to predict the dominant genotype in each postcode district; 

a weighted KNN algorithm achieved a training accuracy of 69% (Fig. 51). Again, however, 

hyperparameter tuning did not improve model performance. We therefore selected the next 

best algorithm (Bagged Trees) and tuning increased the predictive accuracy by a few percent 

to 72.3%, with a testing accuracy of 66.9% and an area under the ROC curve of 0.72, which 

is considered a ‘fair’ result (Fig. 52).  
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Figure 50. Training accuracy of the suite of 24 classification algorithms used to predict the genotype of 

late blight outbreaks. 
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Figure 51. Training accuracy of the suite of 24 classification algorithms used to predict the dominant 

late blight genotype in postcode districts. 
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Figure 52. Receive Operating Characteristic curve of the model for predicting the dominant genotype 

in postcode districts. 

Lack of predictive accuracy is not an unexpected result, as many studies have shown a large 

degree of phenotypic variation in environmental response, even within clonal lineages. It is 

possible that performance could be improved through the inclusion of other predictor variables. 

Nevertheless, it is of interest to note the importance of each weather variable in predicting the 

dominant genotype in each postcode district (Fig. 53). Figure 53 shows the importance of each 

predictor in the final model retained using all the data. The results are quite different to those 

obtained for early outbreaks (Fig. 9), with precipitation and humidity as the most important 

predictors. This provides tentative evidence that moisture is the principle driving factor for the 

competition between genotype 13_A2 and 6_A1. This finding is supported by the experimental 

analyses used to determine the new national warning system for late blight in the UK; the 

Hutton Criteria (Dancey et al. 2017). Controlled environment experiments with contemporary 

isolates of 13_A2 and 6_A1 showed significant levels of infection under drier conditions than 

previously observed. 
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Figure 53. Importance of climate variables in predicting the dominant late blight genotype in postcode 

districts.  
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Discussion 
In this project, a large and complex dataset of pathogen samples from late blight outbreaks 

sampled over 16 years from British potato crops was assembled and studied in relation to data 

on potato crop location and cropping density, hourly weather conditions and other factors such 

as soil and topography in order to evaluate the risks of early outbreaks and the rates of disease 

spread. Each of the pathogen samples had been genotyped and the patterns of genetic 

change in the pathogen population were also examined for evidence of the drivers of 

population change over time and in space. 

The substantial dataset of sampled late blight outbreaks is an excellent resource, but a 

fundamental challenge in analysing data from crop disease surveillance programs as opposed 

to experimental data is observation bias. This bias can have several components, including 

spatial coverage bias (where not all fields are sampled) and detection bias (where some 

infected fields go undetected). This is often because the survey is focused on objectives other 

than a complete census of all outbreaks of disease. For example, in the case of the FAB potato 

late blight outbreak data used in this study, the principal objectives were to report on early 

outbreaks and sample the pathogen population in order to obtain information about population 

diversity, virulence, aggressiveness and fungicide sensitivity. The findings from this data 

affected management practices and was fed back to the potato industry. Sampling may thus 

be more intensive at the beginning of the growing season and decrease once blight is very 

active, or once a scout has already sampled the population in a specific geographic area. The 

FAB outbreak data could therefore be biased by ‘imperfect’ detection and it is possible that 

the resultant ArcGIS and modelling analyses is affected by patterns reflecting the difficulty or 

manner with which late blight was sampled rather than true patterns in occurrence and 

abundance. It can be seen, however, that the spatial distribution of reported outbreaks in the 

FAB data is reasonably uniform across the potato growing areas of GB, with some 

concentrated regions scattered along the eastern seaboard and throughout Wales and the 

South West (e.g., Fig. 14). These areas of higher incidence however, coincide with the areas 

where potato production is most intense, therefore the distribution of sampled outbreaks 

broadly matches the distribution of potato (Fig. 14) and particularly so when normalised to 

potato density (Fig. 15). The number of outbreaks reported in each country also mirrors the 

scale of potato production, which is greater in England, then Scotland and Wales, although 

incidence levels are relatively high for Scotland (Appendix 3). Pathogen sampling is also, 

dependant on suitable weather conditions for disease development and blight incidence varied 

from season to season and from one location to another. Such variation leads to localised 

disease epidemics which will have inevitably skewed the sampling intensity. Such marked 

changes in pathogen population size from one season to the next lead to ‘founder effects’ or 

‘genetic bottlenecks’ which are known to influence the pathogen population structure over time 

(Goodwin, 1997). However, the long-term trend in outbreak reporting dates describes a typical 

epidemic curve for many crop diseases (Appendix 3), where the number of new outbreaks 

increases to a peak then declines with the proportion of uninfected crops and a shift to less 

favourable climatic conditions. Taken together, our evidence suggests that the quality and 

level of sampling activity is consistent and sufficient across most of GB and throughout the 

growing season and thus increases confidence in the outputs of this study. Nevertheless, there 

remains a potential for observation bias and the present findings should be interpreted with 

this caveat. 
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Occurrence of early outbreaks of late blight 

Previous studies have shown that seasons in which late blight infection occurs earlier also 

result in greater infection pressure throughout the season with more late blight outbreaks 

sampled (Cooke, 2019). Because early infection increases both risk and the required 

expenditure on fungicides for blight management there is a clear advantage to the grower of 

prior knowledge of the regions prone to early infection. Analysis of all the outbreaks in this 

dataset indicated clearly that there is no single high-risk region from which early infection 

subsequently spreads (Figs 1-4). Disease occurred, on average, earlier in crops in the south 

of Britain than in the north but the main consistent hotspots of the first 10 and 20% of reported 

outbreaks across all seasons were in the early crops in southwest England, Wales and to a 

lesser extent in Scotland followed by the English Midlands and the Kent and Essex coast. 

Each season was different but, on average, the earliest 10% of outbreaks occurred in the last 

two weeks of May and the first week of June (Fig. 2). A more detailed study of the pattern of 

early disease hotspots over years showed fewer statistically significant hotspots overall and 

more hotspots that were defined as sporadic (Figs. 5 & 6). Modelling also showed that 

temperature was the best predictor of early outbreaks (Fig. 9). The onset and spread of late 

blight remains strongly dependent on the weather and a factor strongly influencing this 

analysis of early outbreaks was the variation in the disease pressure from season to season 

both at a national and a local level. The total number of sampled outbreaks ranged from 300 

in the 2007 season to as few as 58 in 2015. The analysis applied is very sensitive at picking 

up different patterns of hotspots over time but relatively few passed these carefully defined 

thresholds. Colour-coded maps were produced to show the overall risk of early outbreaks by 

postcode district, and the week of the year these were most likely to occur (Appendix 1, Figs. 

A1 & A2). Using these we made general predictions that the earliest infections occur in regions 

with the highest density of potato crops and in warmer, low lying mainly coastal regions with 

earlier crops and more conducive blight weather. Climatic variation made it hard to predict 

more clearly or find other patterns in early outbreaks. In all potato growing regions, it is 

important that growers remain aware of primary infections at the start of the season and 

manage discard piles and volunteer potato plants (groundkeepers) and ensure high quality 

blight-free seed is used (Cooke et al., 2011). Such care will reduce early crop infection and 

aid management practices aimed at preventing rather than controlling disease.  

Risk and rate of spread of late blight  

An Optimized Outlier Analysis was used to examine all the sampled late blight outbreaks from 

2003 to 2018 and identified clustering of disease incidence that provides an indication of future 

disease risk. The map generated from this analysis (Fig. 10 and Appendix 1, Fig. A3) indicated 

that the risk of spread of disease among neighbouring postcode districts was highest in the 

potato growing regions of Tayside, Fife, Lothian, East Anglia and parts of Kent. It was 

somewhat surprising that other potato growing regions such as the Midlands were not defined 

as high risk in this analysis, but this may relate to the year to year variation in local disease 

pressure.  

The data available in this study allowed us to calculate the rate of spread of a new genotype 

across potato growing regions of GB. The velocity of spatial spread of newer genotypes 36_A2 

and 37_A2 from early foci was calculated as between 317 km per week (Figs. 11 & 13). This 

highlights that even from a single point of infection the rate of crop to crop spread can have a 

severe impact on large areas of potato production within even one or two seasons. 

The 37_A2 lineage was first sampled in the Midlands in late June 2016 and caused tuber 

blight outbreaks in the same region in addition to being sampled near Doncaster (Cooke, 
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2019). By the end of the 2017 season it had spread north to North Yorkshire as well as being 

sampled in eastern England and Kent (Figs. 11 & 12). Its spread appears to be consistent with 

crop to crop dispersal but new sources of infection via seed cannot be ruled out. This rapid 

spread had implications for the industry due to its insensitivity to fluazinam (Schepers et al., 

2018) leading to weaknesses in some late-season spray programmes and resulting in an 

increased incidence of tuber blight problems in storage (Cooke, 2019). Genotype 36_A2 was 

first sampled in mid-April 2018 and despite it being a very low risk year it was also sampled 

north of The Wash later in the same season (Fig. 13). This lineage is known to be highly 

aggressive and its rapid spread is also causing management problems for growers. 

Risk of late blight over time 

An analysis of the accumulated total of sampled outbreaks showed some areas of above 

average late blight sampling and postcode districts with commercial potato production from 

which no outbreaks were sampled (Fig. 14). A comparison with the density of potato cultivation 

per district however, indicated the low blight sampling corresponded to low potato density and 

there were no major potato growing areas unsampled. When normalised according to potato 

cultivation density per postcode the distribution of sampling intensity was shown to be more 

uniform (Fig. 15). Not all potatoes are however, grown commercially and the FAB campaign 

has encouraged sampling from gardens, allotments and field trials as they provide another 

component of the pathogen population. Some of these regions appear as more intensively 

sampled patches with more samples for the relatively low potato cropping density (Fig. 15). 

Such samples were however not included in the hotspot data analysis and most maps thus 

indicate areas of commercial production in grey (e.g. Fig. 14) or show postcode districts with 

<1ha commercial potato that are masked out from the analysis (e.g. Fig. 16). A colour-coded 

map was produced to show the overall risk of late blight by postcode district (Appendix 1, Fig. 

A4). 

A more detailed statistical analysis of hotspots in ArcGIS showed the most intense outbreak 

sampling from Kent, an area around The Wash in eastern England and Fife, Tayside and 

Angus in Scotland. Smaller spots were also recorded in the Midlands and Aberdeenshire (Fig. 

16).  No cold spots were recorded. These hot spot regions are areas with the greatest risk of 

blight over all the years and were also statistically significant hot spots in the space-time 

analysis (Fig. 17). There were three types of temporal trend identified in the hot spots of 

incidence: consecutive, sporadic, and new (appearing in the final year) with sporadic hot spot 

the most common. The prevalence of sporadic and lack of persistent hot spots reflects large 

inter-annual variation in the distribution of disease. It is perhaps striking that most potato 

growing districts are not statistically significant hot spots of blight sampling but, as the 

incidence data shows, this does not indicate an absence of blight but a reduced average risk.  

A neural network model was developed to explore the relationship between outbreak risk and 

a series of detailed environmental factors. The overall accuracy of the model was high with 

the best compromise between true positive and false positive rate being of 80 and 15% 

respectively (Fig. 18). A sensitivity analysis to determine the impact of each variable on the 

model’s ability to predict risk revealed some factors with a clear association but also showed 

the challenges of this type of analysis. As expected, weather had a strong impact on outbreak 

risk, particularly temperature, humidity, rainfall and windspeed (Fig. 20). Despite there being 

no known association between soil class or geological type and risk of late blight in the crop 

growing on such a substrate there was also evidence of an association with soil conditions 

and geological type. This analysis picked up above average pH Calcaric and Mollic soils as 

having a lower blight risk (Fig. 23). A difficulty faced in this analysis is that outbreaks were 

defined at postcode district level. Such districts vary in size and clearly comprise potato 
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growing land with a range of characteristics (soil, slope, aspect etc). Because of this, 

topographic factors were averaged across postcodes, instead of individual site conditions 

being applied to observations in the model. Despite this an association between topography 

(elevation, slope, aspect) and outbreak risk was also observed. 

At the extremes there are clear differences with flat peaty soils on land at or below sea level 

in the Fens compared to land of greater elevation and mixed podzol and brown soils in parts 

of Aberdeenshire. But within regions or postcode districts it is unclear how representative an 

average slope or aspect measure is (the resolution is insufficient). 

It is challenging to relate the mapped risks with the hot spot analysis. For example, the soil 

class risk map indicated lower risk in the Fens compared to a higher risk for most of the eastern 

Scottish growing area, yet the outbreak risk and hot spot analysis showed both areas with a 

high risk. It may be that the proportional contribution of soil type to blight risk is low and thus 

over-estimated compared to other factors.  

All the modelling and sensitivity analysis performed with the neural network model was carried 

out using the full outbreak data. The original intention was to repeat this work using data from 

different genotypes and for early outbreaks. However, the number of data points available 

made it impossible to produce statistically robust models using this approach. For neural 

network modelling, the number of data points must be greater than the number of input 

variables, or the model becomes overfitted to the data and effectively meaningless for ‘real’ 

examples. Using fewer model inputs for individual genotypes would have produced 

significantly less accurate models. Future work to explore a resolution to this is recommended. 

Genetic makeup and spatial distribution of late blight pathogen genotypes  

Over the course of this study, the populations of P. infestans causing potato late blight on 

British crops have undergone major changes. New pathogen genotypes may have distinct 

advantageous traits enabling them to spread preferentially and displace others. This can 

happen very quickly under optimal conditions as the rate of inoculum production and its ability 

to spread can develop severe local to regional late blight epidemics. Examples of new traits 

may be an ability to overcome host resistance (Young et al., 2009, Montarry et al., 2008, 

Stellingwerf et al., 2018), a different temperature response (Cooke et al., 2012; Mizubuti & Fry 

1998), increased aggressiveness (Young et al., 2018) or fungicide resistance (Schepers et al., 

2018). Three clones, 8_A1, 13_A2 and 6_A1 have predominated with overall similar mean 

central tendency locations but with a slight skew to the south for 13_A2 and to the north in the 

case of 8_A1 (Fig. 30). Clone 8_A1 has been present in Europe since at least 1995 when it 

was reported widely in the UK and the Republic of Ireland (Day et al., 2004). It has been largely 

displaced by other clones but nonetheless persisted at a low frequency with hotspots in parts 

of Scotland and Wales (Fig. 38). Genotype 13_A2 had a significant impact on potato late blight 

management, particularly when it emerged in 2006-8, as it proved aggressive, insensitive to 

metalaxyl (Cooke et al., 2012) and overcame established sources of blight resistance (Lees 

et al., 2012). This clone spread rapidly from a serious outbreak on the Essex coast in 2006 to 

dominate crops across the UK in the following three seasons. Its spread north was also very 

rapid, found in 80% of Scottish outbreaks by 2007. Despite this initial wide distribution, this 

long-term analysis indicated that major hotspots of 13_A2 (Fig. 36) covered most of East 

Anglia, Lancashire and Wales with northern England and Scotland as cold spots. These cold 

spots reflect a later distinct transition to a population dominated by 6_A1 in Scotland in 2011 

after which the frequency of 13_A2 in Scottish samples remained markedly lower than those 

from crops in England and Wales low (Appendix 2). This change in genotype explains why the 

emerging hotspot analysis indicated only sporadic hotspots in the Midlands and Shropshire 
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and persistent hotspots of 13_A2 in Lancashire and East Anglia (Fig. 41). In contrast, the long-

term hotspot analysis of 6_A1 indicated a dominance from the north Midlands to northern 

England and most of the potato growing area of Scotland (Fig. 37). It has proved persistent 

with 40-80% of samples being of genotype 6_A1 every year since 2011 across much of Britain 

(Appendix 2, Figs. 38-41). The emerging hotspot analysis confirms its long-lasting presence 

in several regions of Britain as persistent or sporadic hotspots (Fig. 42). Sporadic hotspots 

are, in general, a sign of the variation in blight conducive conditions with 2010, 2013, 2015 

and 2018 being drier warmer years with fewer outbreaks to sample.  Genotype 6_A1 has no 

known insensitivity to any fungicide active ingredient but its persistence suggests an ability to 

survive well overwinter and that it is fit and aggressive in field epidemics (Cooke et al., 2012). 

This analysis presents clear evidence of the recent local emergence and spread of two new 

threats. As discussed above, genotype 37_A2 emerged first in 2016 and spread rapidly to 

form a significant and spreading hotspot centred on parts of Shropshire (Fig. 40) and to a 

lesser extent in Kent. These are shown as persistent hot spots in the EHSA (Fig. 45) and 

probably reflect two distinct introductions. This lineage has subsequently spread to Scotland 

and Northern Ireland (www.euroblight.net). After widespread reporting of the fluazinam 

insensitivity of 37_A2 the number of hectares of potato in the UK treated with this product has 

fallen by over 80% (Garthwaite et al 2019). This drop has reduced the selection pressure on 

the 37_A2 population and the rate of spread and incidence of 37_A2 has subsequently 

declined to less than 10% of the sampled population in England and has prevented it fully 

establishing in Scotland (Appendix 2). This is a good example where population monitoring 

and risk assessment has generated timely new guidance on fluazinam use. Fluazinam 

producers and the Fungicide Resistance Action Group – UK advice has changed grower 

behaviour and is protecting this valuable active ingredient for future use. In parts of mainland 

Europe that are reported to be still relying on fluazinam more heavily, the proportion of 37_A2 

remains close to 25% (www.euroblight.net). Although being first sampled one year later than 

37_A2, genotype 36_A2 has formed hot spots in Kent and parts of East Anglia (Fig. 39 and 

44)) and has spread further in 2019 (Appendix 2). With no reported fungicide insensitivity 

issues its ability to displace the existing genotypes appears to be related to aggressiveness 

as it formed larger lesions at low doses of all tested active ingredients to date (Lees et al., 

2018). 

Machine learning algorithms were used to model predictions of the dominant genotype in each 

postcode district. The model provided some evidence that precipitation and humidity are the 

most important predictors, suggesting moisture plays an important role in competition among 

genotypes (Fig. 53). This analysis was, however, challenging due to fluctuations in the number 

of outbreaks sampled per year due to between year climatic variation.  

Finally, a kernel density analysis was used to display the smoothed 13_A2, 6_A1 and 8_A1 

genotype distributions each year from 20062017 (Figs. 46-49). This supported the hotspot 

analysis and indicated a clear early spread of the 13_A2 and 6_A1 types over the 2006 and 

2007 seasons followed by a patchy distribution in subsequent years. In 2011 a severe 

epidemic of predominantly 6_A1 late in the season in Scotland resulted in a skewed 

distribution in subsequent years. Genotype 8_A1 was established almost 10 years before 

13_A2 and 6_A1 and its patchy broad distribution reflects this. A video was also produced to 

show the changing pattern of genotype distributions each year and is available online with this 

report or from the authors.  

 

http://www.euroblight.net/
http://www.euroblight.net/
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Future R&D 

Further research is required to identify the principle drivers of change in the spatial distribution 

of genotypes. This will involve understanding any effects of the environmental variables 

identified by the modelling work as having an impact on late blight incidence. There is also a 

need to examine the role of primary inoculum on genotype distributions, i.e. the strength of 

association between genotype across consecutive growing seasons. There were insufficient 

data to perform space-time pattern mining or modelling of individual genotypes at a suitably 

fine temporal resolution. There is a need, therefore, to increase the number of outbreaks 

sampled each year under the AHDB Potatoes FAB campaign. This is important if we are to 

develop new tools to predict changes in the distribution of aggressive lineages in order to 

adapt short-term control strategies in a more timely fashion.  
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Appendix 1 - Visual aids 
We have derived a series of visual aids from this work, and these are presented below arranged by 

project deliverable. 

1. When and where do early outbreaks of late blight occur in different parts of GB? 

 

Figure A1. Choropleth map showing a count of the 10th percentile by date of outbreaks within postcode 

districts containing >1ha potato (grown commercially), 2003-2018. 
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Figure A2. Choropleth map showing the median week of the year for the first late blight outbreaks 

within postcode districts containing >1ha potato (grown commercially), 20032018. 
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2. What is the risk of spatial spread of late blight in different parts of GB? 

 

 

 

Figure A3. Risk of spread of late blight among postcode districts. Crops in High-High clusters or Low-

High outliers are at risk of spread of disease from neighbouring (High) sectors.  
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3. What is the historical risk of late blight across different parts of GB? 

 

 

Figure A4. Choropleth map showing a count of all outbreaks within postcode districts containing >1ha 

potato (grown commercially), 2003-2018. 
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4. How has the genetic makeup and spatial distribution of the late blight pathogen changed over 

time, and what is driving this change? 

In our analysis, we used Emerging Hot spot Analysis and KDE to explore this question. The 

figures given above show clear changes of genotypes in time and space but do not point to 

clear and obvious drivers based on the traits in the database. Climatic fluctuations from season 

to season impact the blight pressure and sampling intensity. The reduced population size and 

fewer samples over the 4 drier low blight pressure coupled with local high blight pressure in 

other seasons complicates such long-term analysis. It is easier to identify long-term presence 

of genotypes than it is to identify changes in distribution over the last 15 years. Eastern 

Scotland, Wales, the Midlands and Anglia all stand out as persistent areas in this. A visual 

analysis comparing the EHSA between 13_A2 and 6_A1 does show some spatial variation, 

but not enough to draw conclusions from. The Bagged Tree model developed to predict the 

dominant genotype in each postcode district did provide evidence that moisture plays a key 

role in driving pathogen population change, but the model was not accurate enough to draw 

any definitive conclusions. A video has been produced from the KDE maps (Figs. 38-41) that 

animates the changing spatial distribution of pathogen genotypes over time. 
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Appendix 2: P. infestans genotypes (2004-2019) 

Proportion of different clonal genotypes of P. infestans collected from sampled FAB late blight 

outbreaks in a) Scotland and b) England and Wales from 2004-2019. Images generated from 

AHDB data submitted to EuroBlight database and reported via visualisation tool 
https://agro.au.dk/forskning/internationale-platforme/euroblight/  

 

  

https://agro.au.dk/forskning/internationale-platforme/euroblight/


84 
 
 

Appendix 3: Blight outbreaks 
Cumulative monthly totals of blight outbreaks sampled across England, Scotland and Wales 

of the period 2003-2018. 
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