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Abstract 

Control of tuber size distribution (TSD) in potatoes (Solanum tuberosum L) is desired for 

farmers seeking to maximize profit in a market environment that is sensitive to tuber size. 

The TSD and its spatial variability are related to stem density variation. Throughput 

improvements in the methods of quantifying stem density will unlock adoption of more 

precise methods of managing TSD. Understanding the variability of soil nutrients and their 

effects on TSD can also help in the delineation of management zones for precision 

applications like variable rate fertilization. In this study, a method for quantifying TSD based 

on the Weibull distribution was proposed, with consistently lower Root Mean Square Error 

than currently prevalent methods. With this method, negative relationships between TSD 

and excess soil nutrients were uncovered. In above-ground canopy studies, a novel potato 

stem detector was developed using deep convolutional neural network (CNN) and aerial 

imagery. Novel colour indices were also developed for elucidating the locations of potato 

stems from aerial imagery. For the first time, this study demonstrated the potential to map 

stem density (a key determinant of TSD) in a field using high throughput methods. The 

potential of satellite image time series in modelling stem density and yield was also 

examined. Sentinel-2 satellite data was used to create spectral signatures of potato plants 

and their temporal evolution. Features engineered from this data were able to model 

potato Marketable yield and stem density. Temporal evolution of specific wavelengths (e.g. 

559nm), integrated with manually determined stem density, was found to have highly 

significant relationships with marketable yield. As a conclusion, the study uncovered high 

potential for crop growth mapping to predict TSD and aid in decision-support systems. 

Furthermore, the study proposed a unitless Weibull shape parameter as a means of 

quantifying TSD to enable inter-study comparisons in TSD work.  
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CHAPTER 1 - Introduction 

Potatoes (Solanum tuberosum L.) are the world’s third most important food crop after 

wheat and rice (De Jong, 2016), with global production increasing by 26% over the past 

decade FAOSTAT (2021). Grown predominantly in temperate regions, potato production 

systems are input-intensive with high yields and margins due to well developed, 

technologically advanced markets that depend on the consistent supply of high quality 

potato raw material. The potato processing industry in the developed world is a mature 

industry that is efficient in maintaining continuous control of processing quality and quantity 

to satisfy consumer demands, therefore, apart from the diversification of current potato 

products and the unlocking of  new sources of demand, improvements in the value chain 

are likely to come from reduced post-harvest losses due to improved tuber quality (Keijbets, 

2008). For potato growers, this means that high productivity does not necessarily translate 

into high returns due to increasing selectivity of processors for tuber size grades 

(Machakaire et al., 2016), dry matter content, tuber shape and other “tuber quality”  

factors, especially in the pre-fried potato processing sector, which accounts for 62% of the 

global processed potato market (Keijbets, 2008). It is therefore imperative for growers to 

improve the quality of their crop to realise greater value. 

Conventional potato production management is mostly spatially invariable within a field, 

with unifrom management of seed rates, irrigation and fertilisation at an individual field 

scale, though significant spatial variation has been reported in potato yield and size 

distribution (Taylor et al., 2018). The partitioning of photosynthetic products to potato 

tubers and subsequent tuber bulking is a highly plastic process that is continuous until 

senescence (Kooman & Haverkort, 1995) and can be temporally influenced by predictable 

environmental factors such as soil temperature and nitrogen (N) (Ewing & Struik, 2010). This 

means that potato tuber sizes can be predicted as a function of spatially variable 

environmental factors and maps of tuber size variation can be produced. Such maps could 

be for decision-support on variable harvest timing, where areas with small tubers can be 

dessicated later than other areas to allow tubers to grow to the required sizes. Cambouris et 

al. (2006) report that variability of tuber sizes in a field can be addressed through 

delineation of field management zones based on the Electromagnetic Induction (EMI) 
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properties of the soil, particularly the Apparent Electrical Conductivity (ECa) of the soil. The 

ECa is a proxy to understanding soil composition because its value is an expression of the 

collective effect of the soils mineralogical and hydrological composition (Peralta et al., 

2013). In experiments by Cambouris et al. (2006), EMI-based delineated zones received 

variable nitrogen application, leading to a more uniform tuber yield. Promising results have 

also been achieved in tuber size prediction through the manipulation of apical dominance 

and canopy densities through seed ageing techniques (Iritani et al., 1983; Knowles & 

Knowles, 2016; Struik, 2007). Love and Thompson-Johns (1999) report that tuber size has a 

positive correlation with intra-row seed spacing, corroborated by Shayanowako et al. (2015) 

and Bussan et al. (2007). Additionally, Bussan et al. (2007) found that stem density was a 

better predictor of potato tuber size than general plant density. However, most of the 

purported edaphic factors affecting TSD are derived from controlled experiments where 

larger variations in soil nutrient concentrations are induced than can be expected in typical 

production conditions. The on-farm experimentation approach is becoming increasingly 

important in the development of predictive models that are Consistent across a range of 

underlying sources of variation available in a field (Taylor et al., 2018). 

These findings show that early-season prediction of potato tuber number and size 

distribution may be possible where above-ground factors like stem number are determined. 

Agronomists routinely collect manually plant and stem density data to predict tuber number 

and commercial solutions have been developed to model tuber yield and size distribution 

using this data aggregated at farm level. There is an interest to add a spatial dimension to 

these models, to account for variation in plant population density and subsequent stem 

density due to inefficiencies in plant spacing and other factors (Allen & Wurr, 1992). Spatial 

variability in plant and stem population can potentially be used to predict spatial variation in 

yield and tuber size distribution and enable delineation of management zones for precision 

agriculture.  

 Advances in remote sensing have enabled an improved assessment of potato canopy 

development for yield prediction at a regional level, but field level studies are rare. The 

normalized difference vegetation index (NDVI), derived from satellite imagery, has been 

used to model potato yield at the sub-country regional level in several studies (Al-Gaadi et 
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al., 2016). The coarse resolutions of satellite imagery and limited reporting of the use of 

spectral un-mixing and spatial interpolation in this domain means that these models offer 

little applicability at the farm level where localised decision-support application is required 

for precision agriculture. Although satellite imagery is publicly available with weekly revisit 

times globally, there are few published studies on the extent to which individual spectral 

reflectance data from satellite imagery, and their temporal evolution, can be used to predict 

yield or canopy development in the potato crop. Unmanned Aerial Vehicles (UAVs) solve the 

problem of spatial resolution, making it possible for data scientists to focus on other 

bottlenecks to accurate model development. Consequently, there have been rapid advances 

in the literature regarding the development of plant-counting algorithms in potatoes using 

computer vision machine learning approaches with various degrees of accuracy (Li et al., 

2019; Machefer et al., 2020; Sankaran et al., 2017). Asynchrony in potato emergence dates 

in the field is a major limitation to the accuracy of early-season plant counts, which 

necessitates delayed UAV imaging to increase the probability of capturing all viable plant 

units. Unfortunately, delayed imaging introduces the problem of overlapping plants, which 

all previous studies on potatoes have not been able to solve, cognizant of the challenges 

associated with traditional methods of separating overlapping objects in images (e.g. 

watershed segmentation). Additionally, potatoes form a cluster of stems per planted tuber 

and the stem is recognized as the true unit of plant density that related to yield components 

(Allen & Wurr, 1992). No previous studies in the literature have attempted the approach 

reported in this thesis to predict the number of stems in a potato canopy from UAV imagery.  

An interdisciplinary approach is required in order to bring together the edaphic and above-

ground sources of variation that contribute to spatial variation in TSD and produce 

predictive models. Key knowledge gaps in this domain include the establishment of an 

appropriate index for TSD and its linkage to key edaphic factors. There is also a need to 

improve current methods for UAV-based plant-counting to detect individual potato stems as 

well as test whether techniques in geospatial analysis can be used to create reliable maps of 

the spatial variation in plant density, which is pertinent to decision-support in precision 

agriculture applications.  
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The overall aim of this work was to contribute to the knowledge of the appropriate methods 

for spatial mapping and prediction of potato yield and TSD. The studies focused on mapping 

spatial variability in soil nutrients, as indicators of crop nutrition, and canopy reflectance as 

indicators of plant population and biomass. Specifically, the overall goal was pursued using 

the following key sub-objectives: 

1. Examine the relationships between soil properties and TSD at harvest, indexed 

using the Weibull distribution shape parameter 

2. Examine if a significant relationship between soil properties and ECa exists 

3. Develop algorithms for individual stem detection in potatoes at an advanced 

canopy development stage using UAV imagery 

4. Investigate the usefulness of spatio-temporal variation of satellite imagery in the 

prediction of potato yield variation in a field 

5. Evaluate the usefulness of plant density maps produced from UAV images and 

potato yield components  

This work integrated agronomy with biosystems engineering, geospatial analytical methods 

were used to model dependent variables from edaphic factors, while above ground studies 

mainly integrated remote sensing, computer vision, machine learning and geospatial 

analysis to model potato canopy metrics that are related to yield and TSD. 

1.1 Thesis Map 

After a literature review chapter discussing the published research record of all the key 

research themes, this thesis has been organised into chapters that are formatted as journal 

papers. The chapters will be extracted and submitted for publication in peer reviewed 
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journals. The thesis has been organised as follows:

 

Figure 1: A flow chart of the main themes of the thesis 
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CHAPTER 2 – Literature Review 

 

2.1 Overview 

This literature review was based on peer-reviewed journal articles with original research or 

reviews papers accessible using the Harper-Adams University’s electronic library system, 

with access to the Web of Science core collection. Google Scholar was also used to search 

for articles and relevant non-peer reviewed (grey) literature that could not be found on the 

university library system. The purpose of the literature review was to determine the status 

of research on potato tuber size distribution (TSD) in relation to spatially variable soil 

nutrients and above-ground measurements that can be predicted to inform decisions for 

precision agriculture. The literature review therefore informed decisions on research 

questions pertaining to precision agriculture in subsequent investigations. Low-intensity soil 

sampling for nutrient analysis was discovered to require interpolation to create field-scale 

maps that are relevant for the spatially variable management that is inherent to precision 

agriculture. This entailed the review of research and methods for geospatial analysis in 

order to create valid interpolations of point-sampled data during the investigations. Through 

this review, it was envisaged that key links between well-known potato physiology 

phenomena and TSD would be established then potential “points of manipulation” relevant 

to spatially variable precision agriculture would be identified. After an introductory section, 

the literature review comprises of the sections summarized in table 1.  

Phenology of the Potato Crop: The literature search was done using the Web of Science 

core collection. This section starts with an introductory overview of the potato crop in 

Section 2.2, then isolates the key stages within a typical potato production cycle that 

contribute to tuber variation at harvest in Section 2.3. The growth stages emphasized in this 

review include tuber sprouting and breaking of dormancy, soil conditioning and land 

preparation, plant population establishment, post-emergence development, tuber induction 

and initiation and tuber bulking, all of which culminate in a context-specific TSD at harvest.  
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Table 1: Summary of the main literature review sub-sections and main keywords used to 

perform literature search 

Section Title Main Keywords 

2.1 Phenology of the Potato Crop Potato physiology 

Potato agronomy practices 

Apical Dominance 

Induced Dormancy 

Tuber Size Distribution 

Potato phenology 

Tuber induction 

2.2 Influence of Edaphic Factors on Tuber Size 

Distribution 

Apparent Electrical Conductivity 

Potato Soil Nitrogen 

Potato Phosphorus 

Potato Potassium Demand 

Potato soil requirements 

2.3 Remote Sensing for Precision Agriculture:  Remote Sensing 

Spatial Variability 

Vegetation Indices 

Supervised and Unsupervised 

Classification 

Potato Precision Farming 

2.4 Spatial Analysis for Precision Agriculture:  Spatial Modelling 

Kriging 

CoKriging 

Spatial Interpolation 

Gaussian process spatial modelling 

Matern covariance 

 

Influence of Edaphic Factors on Tuber Size Distribution: Literature was searched to identify 

key edaphic factors that affect TSD with the aim of evaluating their forms of action and 

efficacy as reported in literature. This was done to identify and potentially justify the 
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inclusion of any edaphic variable in field surveys and experiments. The review therefore 

identified nitrogen, phosphorus, potassium, calcium and sulphur as key edaphic factors that 

have been studied in relation to TSD. Soil sampling for nutrient analysis is currently a 

predominantly manual and low intensity operation that is aimed at generating a general 

field-level recommendation for fertilizer application. Interpolation of results to produce 

spatially variable density maps is important towards the adoption of variable management 

decisions based on soil variability. The review therefore discusses the potential for using 

apparent electrical conductivity (ECa) – a soil attribute for which high resolution maps are 

readily producible – as a proxy for soil nutrient concentration. Section 2.4 is therefore 

dedicated to a thorough discussion of literary discourse on these soil phenomena in relation 

to potato tuber development.  

Remote Sensing for Precision Agriculture: Section 2.5 explores the advances in remote 

sensing for precision farming. Calling back to earlier discussions on the correlation between 

stem density and tuber size distribution, the review is done to identify remote sensing 

techniques that can potentially be used to create predictive models for tuber size 

distribution. The review therefore focused on vegetation indices and their potential for 

description and analysis of spatial variability in the field with the goal of utilizing identifying 

potential areas for spatial modelling of TSD. ScienceDirect and Google Scholar were mainly 

used for the literature search. Apart from the use of vegetation indices for mapping spatial 

variation, the review discusses the relatively new field of computer vision and machine 

learning, in relation to detection of objects of interest from plant canopy imagery collected 

using unmanned aerial vehicles (UAV). The purpose of this section is to identify the potential 

for using UAVs to detect and map potato plant density and stem density and produce 2D 

density maps (heat maps) of their variation. Such maps can then be used to model the 

spatial variation in TSD.  

Spatial Analysis for Precision Agriculture: In Section 2.6, the review discusses the currently 

available techniques for spatial modelling of edaphic and above-ground factors at the field 

level. A review of spatial analysis techniques follows gradually developing from deterministic 

inverse distance weighting to geo-statistical kriging and Gaussian process modelling.  

Conclusion: The literature review concludes with a summary of the research gaps identified 

in the literature and recommendations for further investigation.  
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2.2 Introduction 

The potato (Solanum tuberosum L.) crop is the world’s third most important crop primarily 

grown for human consumption after wheat and rice (De Jong, 2016). According to the latest 

data from FAOSTAT (2019), global production of potatoes increased by 26% from 297 

million to 376 million Metric Tonnes (MT) between 2006 and 2016. The potato crop is 

popular partly due to its harvest index of 0.81 (Bradshaw & Ramsay, 2009), which is higher 

than that of all the world’s major cereals and grain crops (Unkovich et al., 2010).  

The United Kingdom of Great Britain (GB) has enjoyed a period of sustained increase in farm 

productivity over the past 50 years with yields rising from an average 20 t/ha in 1960 to a 

peak of 48 t/ha in 2011 (Potato Council, 2012), attributed to improved crop protection, 

fertilizer regimes, varieties, and irrigation. Within the same period, the Potato Council 

(2012) reports that the registered number of hectares has dropped by 58%, with a sharp 

97% decrease in the number of registered growers from around 86000 in 1960 to less than 

2000 in 2016. This further puts into context the increase in productivity through improved 

management, capitalisation and specialisation evidenced by the growth in area planted per 

grower from an average 5.5 ha in 1970 to over 50 ha in 2016 (FAOSTAT, 2019). The east of 

England is historically the main potato producing area of GB with 27% of the potato planted 

area followed by Scotland then East Midlands at 21% and 14% respectively (AHDB, 2018). 

Furthermore according to the AHBD (2018), the most common variety is the Maris Piper 

with its production area fluctuating around 14% of the country’s total potato production 

area while the closest competitor covered only 5%. The majority of potatoes are sold as 

either fresh potatoes or chips, however, there is also a significant share of market for frozen 

potato products  

Potato growers mechanically grade their seed into discreet size grades to meet market 

requirements for ware potatoes, defined as potatoes which are destined for human 

consumption (Witney & McRae, 1992). The ware-grade size range reported in literature has 

shifted from 35 mm-80 mm range (Allen & Wurr, 1992; Witney & McRae, 1992) to the 

current most widely quoted commercial range of 45 mm-85 mm (Yara, 2018; AFBI, 2018). 

Consequently, it is in the interest of every farmer to maximize the percentage of their yield 

falling within this range for maximum returns, which raises the interest in developing the 
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ability to predict and control Tuber Size Distribution (TSD) at harvest (Machakaire et al., 

2016). 

2.3 Phenology of the Potato Crop 

The potato plant belongs to the Solanaceae family and was domesticated in South America 

in the pre-Columbian period (Camire et al., 2009). It is a herbaceous dicotyledonous plant 

with one or more primary stems that anchors compound leaves with three to four pairs of 

primary and secondary leaflets (Kirk & Marshall, 1992) as illustrated in Figure 2.  Potatoes 

flower and set true seed in berries through insect pollination, however, due to gradual 

selection for high yielding varieties by farmers, the currently cultivated varieties of potatoes 

are self-pollinating but mostly self-incompatible polyploids (Spooner & Bamberg, 1994). 

Propagation of potatoes is therefore mainly vegetative through the tuber to enable 

maintenance of varietal purity (Spooner & Bamberg, 1994). The growth stages of the potato 

crop overlap from the time a tuber sprouts up to senescence and skin set, therefore there is 

no definitive chronological key for describing the growth of the potato (Jefferies & Lawson, 

1991). However, drawing from earlier unconsolidated descriptions by other authors, 

Jefferies and Lawson (1991) proposed a growth-stage based key for scientific data recording 

and commercial production purposes namely Tuber dormancy, Tuber sprouting, Emergence 

and shoot expansion, Flowering, Tuber Development and Senescence.  
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Figure 2: A labelled image of a typical potato plant showing the location of primary and 

secondary stems 

Practical production of potatoes involves the manipulation of the environment to affect the 

rate of these phases with the ultimate goal of improving the harvest index. The following 

sections discuss the critical stages of the cycle which have impact on tuber quality and size 

distribution.  

2.3.1 Breaking Seed Tuber Dormancy and Pre-sprouting 

Potato tuber dormancy is described as an initial period after tuber formation when the 

tuber will not initiate sprouts under ideal natural conditions (Reust et al., 2001). While there 

is a debate over when dormancy starts, it is generally agreed that potatoes exhibit the two 

typical forms of dormancy common in seed producing crops namely deep dormancy 
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(obligate rest period) and induced dormancy due to environmental factors (Caldiz et al., 

2001; Jefferies & Lawson, 1991). Obligate deep dormancy is cultivar dependent and 

hormonally controlled (Suttle, 2004), followed by a period of induced dormancy starts which 

can be usually broken by growth stimulating hormones like Gibberellic Acid (GA) (Knowles & 

Knowles, 2006). Dormancy is naturally broken in dark conditions at temperatures of 15-20C 

and relative humidity over 90% to initiate sprouting (Jefferies & Lawson, 1991). Some 

farmers deliberately break dormancy and pre-sprout their potatoes before planting in order 

to ascertain that planted potatoes have viable stems and to exercise a control on stem 

numbers per tuber where possible (Allen & Wurr, 1992). This stage, combined with 

physiological aging provides one of the first points in the production cycle at which a farmer 

can influence the stem density of his crop to ultimately affect tuber number and TSD 

(Knowles & Knowles, 2006).  

The final number of stems developed from a single tuber depends on several factors 

including the variety, tuber size, number of eyes on the tuber and the physiological age of 

the tuber at planting (Jefferies & Lawson, 1991; Knowles & Knowles, 2006).  The 

physiological age of a potato tuber is defined by Allen et al. (1979) as the sum of the average 

daily temperatures above 4C after the release of deep dormancy. In physiologically old 

seed (subjected to growth conditions relatively earlier), the apical bud exerts enough 

dominance to supress the growth of other buds, leading to fewer sprouts per tuber (Allen et 

al., 1979), while in seeds which have been subjected to prolonged low temperatures 

(physiologically young) exhibit less apical dominance, leading to more sprouts per tuber 

(Allen et al., 1979). Knowles and Knowles (2006) observed an increase in stem numbers with 

advanced physiological age, however, the ageing process was based on accumulation of 

heat units by altering storage temperatures above 4oC. However, similar to the drivers of 

apical dominance, the nature of  physiological aging and how it affects stem numbers 

remains poorly understood and may be cultivar-dependent, as asserted by (Struik et al., 

2006). Ultimately, variation in stem numbers on account of differences in physiological age 

in different seed batches can be expected, translating to potential spatial variations where 

more than one batch is planted a field. 
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2.3.2 Land Preparation and Planting 

Land preparation in potatoes is tailored towards maintaining a well aggregated, stable, 

aerated, free-draining and biologically active soil (Harris, 1992). Field operations to achieve 

this are site-dependent to remediate the effects of prior land use practices. Soils are often 

assessed in late summer or autumn for structure and texture problems as well as potential 

water run-off in the first 500 mm (Witney & McRae, 1992). Depending on the findings, 

subsoiling can be done to break compaction pans. Ploughing is recommended up to 30 cm 

depth to loosen the soil, bury weed seeds and ensure good tilth (Harris, 1992) followed by 

seed bed (rows) formation at 80-90 cm apart. The depth of the beds matches the plough 

layer (Harris, 1992). After bed formation, de-stoning is done to reduce the risk of eventual 

tuber bruising at harvest at 30-38 cm for ware potatoes and 25-30 cm for seeds and salads, 

though it has been reported that no advantage in productivity (yields) is gained when soils 

are destoned deeper than 25 cm for any potato grade (Stalham et al., 2007). De-stoning is 

often combined with planting in a single operation; windrowers are mounted with a planter 

to combine the operations (Harris, 1992). Fertilizer application is also done at planting, often 

combined with the planting operation while ensuring that placement is done on the side 

and below the seed pieces (Harris, 1992). This is done to reduce direct contact between the 

seed pieces and concentrated fertilizer pellets which may be injurious to emerging 

seedlings. 

The most commonly used measure of plant density in potatoes is the seed rate, which is 

defined as the weight of seed planted per unit area (Allen & Wurr, 1992). This is affected by 

the size of seed tubers, therefore a desired plant population for each particular seed size is 

selected based on seed supplier information on emergence rates of the tubers after which 

the seed rate is calculated backwards (Allen & Wurr, 1992). Within-row spacing is therefore 

dependent upon the desired plant population as a function of seed size. Two types of potato 

planters in common use in the UK are the cup planter and belt planter (Witney & McRae, 

1992). Cup planters deliver seed to the soil using evenly spaced cups which scoop up the 

seed from a reservoir. The accurate spacing of the cups means that a high degree of 

accuracy is achieved in plant spacing, however, the fixed size of the cup causes problems in 

handling of large seed. The scooping action also causes damage to sprouts where pre-

sprouted seed is used. The belt planter delivers the seed to the soil via a conveyor belt on 



15 

 

which seeds are arranged in a stream. This minimizes damage to pre-sprouted seeds, 

however, the seed is delivered with a forward trajectory which causes inaccuracies in 

spacing (Allen & Wurr, 1992). Plant spacing is one of the key determinant of tuber number 

and size. Increasing plant spacing significantly affects the population of tuber-bearing units 

per unit area and in turn decreases the total and marketable yield (Bohl et al., 2011). Several 

studies have also reported an increase in small-sized tubers in densely planted plots, 

establishing a negative relationship with tuber size due to increased competition to bulk a 

larger number of tubers from a finite source of intercepted radiation at full canopy (Allen & 

Wurr, 1992; Arsenault et al., 2001; N. R. Knowles & Knowles, 2006; Love & Thompson-Johns, 

1999).  The problems with plant spacing caused by inconsistent seed sizes and inefficient 

planters call for better standardization of seed sizes and more research in seed delivery 

mechanisms in planters respectively. From a precision agriculture perspective, it is also 

pertinent to do an ex-post determination of any apparent spatial variation in plant density 

after emergence so that yield expectations can be adjusted and zones for variable 

management (e.g. variable harvest timing) can be delineated. 

2.3.3 Post-Emergence Development and Apical Dominance 

After emergence, a potato plant is anchored by a main stem which determines the plant’s 

height, canopy spread and density through axillary branches and leaves (Almekinders & 

Struik, 1996). The leaves of potatoes start out as undivided whole leaves on the first 4 buds 

from the soil surface, however, from the 5th bud upwards, compound leaves are formed 

consisting of several pairs of lateral leaflets and a terminal leaflet (Jefferies & Lawson, 1991). 

The main stem’s apical dominance is broken by the development of flowers which 

terminates vertical growth, however in indeterminate varieties, this paves way for the 

development of secondary stems through sympodial and axillary buds (Almekinders & 

Struik, 1996; Jefferies & Lawson, 1991). The degree of apical dominance therefore 

determines the stem and branch density in a plant. Prediction and control of stem density is 

of interest in potato production because it has been reported to have an influence on tuber 

size distribution (Bussan et al., 2007). Apical dominance is hormonally controlled by Auxins 

and Cytokinins, and their interactions (Hall & Hillman, 1975). Historically, three theories 

around production of the auxin indole-3-acetic acid (IAA) in apical meristems have been 

used to explain apical dominance (Kebrom, 2017; Mason et al., 2014); 
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1. Direct Inhibition: Excess auxin production in the apical meristem enters the phloem 

and is transported into axillary buds where it concentrates, and inhibit auxin 

synthesis which is necessary for bud growth.  

2. Canalization: Excess auxin production in the apical meristem is moved down the 

stem where it inhibits the biosynthesis of cytokinins and other plant hormones which 

are necessary for axillary bud initiation.  

3. Indirect Inhibition: Auxins in the apical meristem induce stem elongation at the apex 

thereby increasing the demand for sucrose and other growth factors. This essentially 

maintains a sharp sugar gradient which deprives the buds of nutrition hence 

controlling growth and maintaining apical dominance. 

The direct inhibition theory was originally disproved by Hall and Hillman, (1975), who 

observed that apical dominance was broken before the concentration of auxins dropped in 

the stems when apical meristems of Phaseolus vulgaris were decapitated. This proved the 

existence of a secondary signal from the apical meristem which inhibits bud outgrowth and 

acts faster than the auxin gradient. Although there is no consensus on the nature of the 

second signal, it is widely accepted that cytokinins and strigolactones are central to bud 

activation (Domagalska & Leyser, 2011). As a result, the canalization theory is the most 

widely adopted and utilized in mechanistic models. 

The indirect inhibition theory has recently gained traction after Mason et al. (2014) 

observed that sugar accumulation in stems follows immediately after apical meristem 

excision in Peas (Pisum Sativa). Additionally, infusion of sugar into dormant buds of peas 

significantly induced bud growth. These findings suggest that sucrose may also act as a 

signalling molecule for apical dominance. It can be theorized that stem elongation at the 

meristems supresses branching in dicots by acting as an active sink for photosynthetic 

products which deprives the axillary buds of carbohydrates needed for growth (Kebrom, 

2017). As stolons are part of the stem system, low apical dominance at the stolon apex 

should also hypothetically lead to more equitable sugar distribution in the primary and 

lateral apices from which tubers are formed. Potato tubers are formed from either primary 

or secondary stolons, which also exhibit apical dominance; primary stolons are more likely 

to form tubers than secondary stolons (O’Brien et al., 1998). Apart from apical dominance, 
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stolons also exhibit variations in apical control and sink strength, causing large variations in 

tuber sizes among tubers falling on the same main stem (O’brien et al., 1998).  

Ultimately the determination of above-ground apical dominance may provide a proxy for 

understanding the variation in tuber sizes and stolon numbers below-ground if their 

realizations are controlled by the same signal. A correlation of these two variables has not 

been identified in literature but it might aid in explaining a portion of the variation in tuber 

sizes at harvest. Furthermore, the correlation between stem density and TSD has been 

reported by various authors, with a general consensus that higher stem density per unit 

area leads to a proliferation of more tubers but with a smaller average size due to 

competition for a finite source of resources for tuber bulking (Bleasdale, 1965; Gray, 1972; 

Knowles & Knowles, 2006; Love & Thompson-Johns, 1999). However, at the plant level, the 

possible natural propensity of mother tubers with low apical dominance to produce smaller 

tubers due to auxin-regulated sugar distribution over more stolons has not been 

investigated in the literature and remains a key knowledge gap. From a precision agriculture 

perspective, development of reliable methods for the determination of stem density and its 

spatial variation would constitute a significant progression in this field. This is because stem 

density is considered to be the true unit of plant density for predicting yield and TSD but its 

accurate prediction across a field has so far eluded agronomists (Allen & Wurr, 1992).  

2.3.4 Tuber Induction and initiation 

The term Tuber Induction in potatoes refers to the hormone-controlled processes that 

result in the halting of stolon tip elongation to favour of lateral growth culminating in tuber 

initiation, which is the swelling of the stolon tip to form a tuber (Claassens & Vreugdenhil, 

2000). A literature review of this stage and tuber initiation is warranted as its timing 

ultimately affects decisions on planting date and harvest date. Management decisions of 

vine desiccation and harvesting are based on the maximization of groundcover between 

tuber initiation and harvest, as well as the monitoring of tuber bulking towards the 

preferred tuber size profile. It is therefore necessary to understand the signals that control 

tuber initiation for possible manipulation of tuber numbers and hence biomass partitioning 

towards a desired tuber size profile. 
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Xu et al. (1998) reported that a switch occurs from transversal to longitudinal cell division 

during tuber induction, associated with the activity of auxins, analogous to above-ground 

axial branching. Roumeliotis et al. (2012) found that the expression of the StYUC-like1 gene 

which controls auxin biosynthesis in stolons increases in a direct relationship with stolon 

auxin concentration when short day conditions are induced. To locate dominant sites of 

auxin production and distribution, Roumeloitis et al. (2012) tracked the direction of auxins 

movement in the stolon using 14C labelled IAA and the direction was found to be basipetal. 

This suggests that stolon tips display apical dominance and control tuber induction through 

auxin activity using similar mechanisms to those that main stems use to control above-

ground lateral branching. Endogenous GA concentration was also identified as the dominant 

regulator of tuber formation, having an inverse relationship to tuber induction. This 

corroborated widely reported results that the exogenous application of GA inhibits tuber 

induction while its declining concentration induces tuberization (Ewing & Struik, 2010; 

Kumar & Wareing, 1972; Railton & Wareing, 1973). Xu et al. (1998) also identify abscisic acid 

as an induction promoter which may have an antagonistic relationship with GA on tuber 

induction. 

Potatoes are qualitative short day plants and tuberize at day lengths shorter than 12 hours 

(Ewing & Struik, 2010). The photoperiodic response is perceived in the leaves but the signal 

is transmitted into the stolons and regulates induction through the action of GA (Jackson et 

al., 2000). As a result, planting date is very important in potato production in order to 

ensure that tuber induction occurs when the above-ground canopy has developed 

adequately for maximum photosynthetic efficiency and tuber bulking. High temperatures 

are also known to inhibit tuberization by encouraging the growth of stolons and the 

partitioning of more photosynthetic products to the shoot by stimulating bud activity to 

favour stolon and branch development (Jackson, 1999). Even on already bulking tubers, 

increased soil temperatures have been reported to result in the reactivation of stolon 

growth towards the soil surface at the apical bud until this is halted by decreased 

temperature (Ewing & Struik, 2010). It is further suggested that alternating soil temperature 

regimes can lead to multiple tuber initiations and intermittent stolon growths leading to the 

formation of chain tubers (Jackson, 1999). Additionally, Jackson (1999) report that high 

concentration of nitrogen ions supplied as ammonium or nitrates has a similar inhibitory 
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effect and temporal dips and rises in nitrogen ion concentration in the rhizosphere equally 

leads to the formation of a chain of tubers. 

The inhibitory effect of GA on tuberization brings up a question of whether GA application 

at a critical stage can limit tuber number and thereby enable more biomass partition to a 

controlled number of tubers. GA inhibitors can also potentially be used to induce early 

tuberization. These potential applications have not been reported extensively in literature, 

warranting their possible investigation.  

2.3.5 Tuber Set and Size Distribution 

The term tuber set is used to describe the total number of tubers produced per planting 

station/hill (Knowles & Knowles, 2006; Rosen & Bierman, 2008). It is reported to be cultivar 

dependent (Love & Thompson, 1999) but also environmentally controlled (Freeman, Franz, 

& Jong, 1998; Knowles & Knowles, 2006; Wurr et al., 1993). For example, Rosen and 

Bierman (2008) report of a positive correlation between soil P test and tuber set, however 

the increase in tuber number came from small (unmarketable) tubers (less than 85g) while 

the number of marketable tubers decreased. Several studies have also established GA as a 

determinant of tuber set. Dean et al. (2018a) suggested a combination of GA and 

Naphthaleneacetic acid to decrease the average tuber size and stem number respectively, a 

combinatory strategy that has the effect of standardizing tuber size in varieties that exhibit 

low apical dominance. An inverse relationship also exists between plant spacing and tuber 

set as observed in experiments by Wurr et al. (1993). Additionally, Allen and Wurr (1992) 

report that increase in the number of stems per plant is associated with increase in the 

number of tubers per plant. However edaphic factors and plant nutrition are the main 

determinant of the final number of tubers and their sizes. Their influence has therefore 

been discussed in detail in Section 2.4.  

Attempts have been made to mathematically model tuber development in potatoes using 

crop models like the LINTUL-POTATO (Kooman & Haverkort, 1995), which is reported to 

accurately predict yields several weeks in advance of harvest but without the provision to 

predict TSD at harvest. The term TSD refers to a measure of the proportions of different 

discreet tuber size (Wurr et al., 1993) or weight (Marshall et al., 1993) grades in a harvest 

sample. There is high tuber size variability in potatoes – even those harvested from a single 
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stem – due to stolon characteristics, hormone and enzyme activity as well as environmental 

factors (Struik et al., 1991). There have been many attempts to control these factors to 

achieve a degree of predictability of TSD to maximize size uniformity in harvested tubers 

(Wurr, et al., 1993; Bussan et al., 2007; Struik et al., 1991). The ability to predict and 

manipulate TSD depends on its accurate description and choice of parameters to measure it. 

Travis (1987) used the mean tuber weight and the standard deviation, assuming a Gaussian 

distribution of tuber weights falling under predetermined weight grades, a model later 

adopted by Struik et al. (1991) and Wurr et al. (1993). However, later literature including 

Bussan et al. (2007), Hide and Welham (1992)and Nemecek et al. (1996) contend that TSD 

rarely follows a Gausian distribution. After long term observations of potato bulking rates 

and tuber development between 1965 and 1974, Hide & Welham (1992) found that a 

potato plant produces two populations of tubers with different means and variances during 

the season and the TSD is best modelled using a combination of two normal distributions. 

However, this model has not been widely adopted due to the fine riddle sizes required to 

collect data that the model can adequately fit and the occasional prediction of negative 

tuber sizes, classified as resorbed tubers by the authors. The use of a flexible distribution is 

strengthened by evidence from Love and Thompson-Johns (1999), where TSD was shown to 

shift from predominantly small tubers to predominantly large tubers as in-row plant spacing 

is increased (Figure 3). 
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Figure 3: An adaptation of the observed effects of in-row seed piece spacing on yield of 

tubers Frontier Russet, Ranger Russet and Russet Burbank varieties. Simulated from Love & 

Thompson (1998) data using a Weibull distribution by varying shape and scale parameters. 

A less widely adopted model which eliminates the prediction of negative tuber sizes and 

offers a flexible shape depending on sample characteristics is the Weibull function adopted 

by Nemecek et al. (1996) and Bussan et al. (2007) among others. The Weibull distribution, as 

described by Nemecel et al (1996), is a continuous distribution mainly used in survival 

analysis, due to its flexible shape parameter that determines a rate if failure of the modelled 

process over time. The flexibility of the shape parameter allows for modelling both left and 

right skewed distributions as well as symmetrical distributions, as illustrated in Figure 3. 

Nemecek et al. (1996) and Bussan et al. (2007) were able to predict the tuber size variation 

by fitting a Weibull distribution to their data due to the flexibility of the curve to shape 

changes. If a sample tuber set is partitioned into quantiles based on tuber size, the shape 

parameter of a fitted Weibull distribution can potentially be used as an estimate of the 

shape of the TSD. However, Nemecek et al. (1996) suggest that the shape parameter 

remained constant at 2.3 while only the scale parameter shifted, and therefore enabled 

them to model TSD using the probability density function of the Weibull distribution. Bussan 
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et al. (2007) opted to estimate the Weibull parameters as functions of other measured 

variables, for example, the scale variable was modelled as a function of stem number. Aliche 

et al. (2019) also used the Gamma function to model TSD, which closely relates to a Weibull 

distribution with a small shape parameter as adopted by Nemececk et al. (1996). These 

different approaches show that the description and measurement of TSD is currently non-

standardized, making it difficult to compare studies where different treatments have been 

used to purportedly influence TSD.  

Several studies describe TSD either as the coefficient of variation assuming a Gaussian 

distribution (Wurr et al, 1993), sometimes only described qualitatively, comparing different 

treatments using polygonal charts (Knowles & Knowles, 2006), or as the yield proportion of 

a “desired” tuber size range (Arsenault et al., 2001). There is a huge variation in “desired” 

TSD in different countries and markets (i.e. table potato vs seed potato), which complicates 

the choice of parameter to describe TSD and target its manipulation. Generally, tubers are 

graded into marketable and unmarketable subsets based on a size threshold, then the 

marketable subset is further graded into small, medium and large tubers which have 

different market values (Cambouris et al., 2015). The thresholds for marketable tubers and 

their further grading into different size ranges varies in different markets. While some 

countries (e.g. USA and Canada) have pre-defined tuber classification systems which 

conveniently create fixed bins for modelling TSD, thresholds for marketable tuber size in GB 

are generally decided by the outlet market (Taylor et al., 2018) and may be re-negotiated 

during the season depending on crop performance. Though classification of tubers into 

weight grades is common across the globe, tubers are normally graded according to their 

diameter using a square mesh (Nemecek et al., 1996), then the subsequent yield of each 

size grade per hectare ultimately decides the commercial value of the produce. Therefore, 

there is more direct benefit in developing TSD models based on linear measurement grades 

(i.e. mm, in or cm) then utilize size to weight conversion functions such as provided by Travis 

(1987) to predict and extrapolate yields. However, both size and weight-based classification 

systems are used in several different countries with no standardization hence the effect of 

independent variables on TSD as reported in literature are contingent upon the grading 

system used, making it difficult to compare different studies. 
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A cursory search on peer reviewed publications over the past 50 years (1970-2020) shows 

increased interest in optimization of potato tuber size and its distribution using appropriate 

rates and application strategies of primary and secondary macronutrients since the 1990s. 

For example, using the “tuber yield” keyword refined to Potato-related papers in the “Web 

of Science” (WoS) database yields results mainly composed of genetic crop improvement 

and manipulation of metabolic pathways using plant growth regulators, reflecting the 

domination of plant breeding in yield gap reduction research. However, soil amendment 

with primary and secondary macronutrients for optimization of tuber yield has been studied 

in up to 20% of published potato research per decade since 1970. The optimization of 

potato tuber sizes has become important for maximizing marketable yields and minimizing 

post-harvest losses in crop value. While crop improvement also dominates research on 

tuber size optimization, the past 50 years have seen an increase in the percentage of studies 

investigating the effect of primary and secondary macronutrient soil amendments from 12% 

in the 1970’s to 24% between 2010 and 2020. Consequently, the use of the keyword “tuber 

size distribution” in publications has increased exponentially since 1970 and macronutrient-

related research on TSD has increased from virtual non-existence in the 1970’s to 17% of all 

indexed papers on TSD between 2010 and 2020. This provides an opportunity for the 

current study to contribute towards defining an objective measure of TSD that can be across 

different studies. The Weibull distribution shape parameter provides such a unit-less index. 

In a bid to understand production factors that affect TSD, Bleasdale (1965) first reported a 

positive correlation between stem density and yield within each tuber size fraction. This was 

subsequently corroborated by several authors (Gray, 1972; Wurr, 1974) leading to 

widespread adoption of stem density as a proxy for predicting/manipulating expected tuber 

size fractions. Bussan et al. (2007) was able to predict increases in the proportion of small 

tubers with increased stem density at the expense of the proportion of large tubers. The 

model was able to predict the relative stability of proportions of mid-grade seed sizes with 

shifting stem densities. This agrees with findings by Struik et al. (1991) that the number of 

tubers that will reach marketable size is usually fixed before tuber bulking, partly by the 

stem density. Subsequently, tuber bulking favours the larger tubers to the smaller tubers, 

leading to non-symmetric TSD for late harvested potatoes. From these findings, it can be 

hypothesized that combining the tuber size prediction power of stem density and the ability 
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to choose a time of harvest could offer a practical management option for optimizing tuber 

size at harvest.  

 

Apart from stem density, many other techniques for manipulating TSD have been proposed. 

(Dean, Knowles, & Knowles, 2018b) were able to achieve this using 2mg-1 seed dips in GA 

which resulted in a proportional increase in undersized (<113g) tubers and a reduction in 

oversized (>397g) tubers. This however also depressed the average tuber weight by 20% in 

comparison with non-treated controls. GA favours stolon elongation to tuber formation (Xu 

et al., 1998), therefore it is expected that it would slow tuber bulking rates and depress 

yields as observed in this study. In experiments with Russet Burbank and Ranger Russet 

varieties, Love and Thompson (1999) found positive correlation between seed spacing and 

large (>452g) tuber size proportion in the TSD, ranging from 0% at 8cm intra-row spacing to 

37% and 49% at 91cm spacing respectively for the two varieties.  

In order to predict TSD and its spatial variation at harvest in a precision agriculture context, 

there is need to model it as a function of stem density, soil variation or their proxies. The 

effect of stem number on TSD has mostly been evaluated in stem density experiments in 

controlled environments. It is necessary to test this relationship at a field scale in typical 

commercial production settings by means of field surveys. This necessitates the 

development of a rapid way of evaluating TSD using a parameter that can be used to model 

the relationship with stem densities which has not been done in literature. While the effects 

of above-ground plant canopy factors on TSD have been widely studied, the effect of the 

primary soil nutrients is not elucidated and examined in a coherent way. Wurr et al. (1993) 

and Struik et al. (1991) reviewed the agronomic manipulation of plant processes that 

determine TSD. With many studies collecting graded tuber yield data in relation to 

macronutrient amendment rates and timings, a review of the overall trends in responses 

and the current status of the research questions surrounding TSD and soil nutrition is not 

available. It is therefore important to review the body of literature that links soil factors to 

TSD for the purpose of selecting appropriate nutrients to incorporate is a potential 

predictive model for TSD. 
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2.4 The Influence of Edaphic Factors on Tuber Size Distribution 

The purpose of this section is to evaluate research work on the influence of soil physical and 

chemical properties on Potato Tuber Size Distribution (TSD), with a focus on properties that 

have a potential for use in precision agriculture as decision support information for variable 

rate fertilizer application or management zone delineation for improved productivity. The 

review identifies knowledge gaps in the edaphic factors that control TSD at the agronomic 

management level with the aim of formulating research questions to direct subsequent field 

experiments. As such, the review starts with an evaluation of the current fertilizer 

management practices in potato production in GB then goes into the discussion of some of 

the key soil variables with potential for efficacy in the control of TSD in a precision 

agriculture context. 

 2.4.1 Fertilizer Practices in Potato Production 

Current fertilizer recommendations in potatoes for phosphorus, potassium and magnesium 

in the UK are based on  achieving and maintaining target soil Indices for each nutrient in the 

soil. The fertilizer recomendation guide AHDB (2021) is currently recommended for 

decisions on fertilizer application. According to AHDB (2021), historical experimentation has 

led to the current recommendation to maintain a target of at least 16 mg/kg, 121 mg/kg and 

51 mg/kg of P, K and Mg respectively in the soil across the UK. Consequently, fertilizer 

requirements are based on remediating deviations in soil tests to achieve these 

concentrations. Recommended application times for the three elements is in spring, 

however, where the recommended rate of potassium exceeds 300 kg/ha, a split application 

is done by applying half of the requirement in winter. Due to this potential advance 

requirement, soil analysis is usually done in the summer or immediately after harvest. 

Sulphur application is generally not recommended in the UK, however, a flat rate of 25 

kg/ha SO3 is recommended where deficiencies are noted. 

Nitrogen application requirements are calculated annually by measurement of Soil Nitrogen 

Supply (SNS) and Soil Mineral Nitrogen (SMN) levels (AHDB, 2021). The SNS is based on the 

analysis of nitrate and ammonium concentrations in the soil in kg/ha. It is recommended to 

estimate and sum the SNS at 0-90 cm depth or to a known rooting depth. The SMN is 

subjectively estimated based on any planned organic matter incorporations to the soil after 

soil sampling. Drawing from prior research by Cambridge University Farm and Harris (1992), 
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AHDB (2021) reports that indeterminate varieties generally require less nitrogen than 

determinate ones, and nitrogen mainly affects the crop by prolonging the period of green 

haulms. This means the efficacy of nitrogen application is closely tied to the date of harvest. 

With these findings, all commonly grown varieties in the UK have been classified into four 

groups based on their determinacy and production seasons have been classified into 4 

groups of 30 days each. Using these calculations, soil nitrogen requirements are therefore 

calculated as a function of SNS, crop determinacy and length of growing season. All nitrogen 

applications are done in the seedbed before planting, however, a split application is 

recommended where top dressing is preferred by applying two thirds in the seedbeds and 

one third after 50% emergence. The SMN index allows for estimating nitrogen requirements 

based on previous crop, soil type and general rainfall pattern of the production area, 

however, this may not allow for the establishment of in-field variability necessary for 

precision farming therefore has not been reviewed here. 

2.4.2 Effect of Soil Nutrients on Tuber Development and Size Distribution 

2.4.2.1 Nitrogen 

A positive relationship between potato yield and nitrogen fertilization rate has been well 

documented in literature (Long et al., 2004; Porter & Sisson, 1991; Schippers, 1968a; R. K. 

Scott, 1980), enabling the development of N management models for yield optimization. N 

availability is one of the most important yield limiting aspects in agricultural production and 

potato yields are known to respond positively to its accumulation in the soil up to an 

optimal value. 

Schippers (1968) found that potato yields respond positively to incremental doses of soil-

applied N between 0-80 N kg/ha, reaching an asymptote at N rates in excess of 80 kg/ha in 

sandy soils with spatially variable water retention. Porter & Sisson (1991) reported similar 

quadratic regression curves whereby Russet Burbank and Shepody potato optimized tuber 

yield at 196 N kg/ha and 211 N kg/ha respectively when preceded by a cereal in rotation and 

126 N kg/ha and 136 N kg/ha respectively in a legume rotation. These quadratic responses 

have been consistently reported over the last 5 decades and help formulate the basis of 

fertilizer recommendations for potato production. In a widely accepted conclusion, Scott 

(1980) discuss that although incremental soil-applied N rates correlate positively with the 
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actual amounts of N taken up by the crop, resultant plant growth response is observed in 

leaf expansion rather than tuber growth, with luxury N-uptake observed at 400 N kg/ha and 

tuber bulking delayed by an average 8.5 days. Additionally, temporal ( Scott, 1980)and 

spatial (Cambouris et al., 2007) autocorrelation of yield is partially dependent on in-field N 

variability, which highlights the site-specific nature of nitrogen effects on potato yield.  

The positive influence of N on average tuber size has been reported by several authors but 

its effect on the overall TSD and its central tendency has not been consistently 

demonstrated. This is partly due to the loose application of the term “TSD” by authors and 

the lack of a standardized and generally accepted method of its quantification (Wurr et al., 

1993). As earlier discussed, potato growers target different tuber sizes at harvest depending 

on their outlet market (Taylor et al., 2018; Wurr et al., 1993), which makes it difficult to 

standardize the size classes and objectively compare TSD from different studies. Studies on 

how N variation translates to variation in TSD often focus on the effect of rate on yield or 

proportion of a specific desired “marketable” weight or diameter range in the yield. Most of 

the studies considered in this review had TSD as a secondary hypothesis to the effect of N 

rate on average yield, desired to minimize post-harvest/grading losses and maximize the 

market value of production. Ammonium Nitrate is the predominant form used in N studies. 

While there is limited use of ammonium sulphate (Fontes et al., 2010) and UREA (Boydston 

et al., 2017; Gao et al., 2018) and polymer coated UREA for controlled N release (Gao et al., 

2018), the effect of N form on TSD is either insignificant (Gao et al., 2018) or has not been 

evaluated in most studies. Therefore, the most probable way in which targeted N delivery 

will be achieved for TSD and yield improvement will be through applying the right rates of 

fast-release N sources like UREA and Ammonium Nitrate at critical times. The critical need – 

which is the subject of this section of the review – is to accurately determine the critical 

times of N application and their corresponding N rates that optimize TSD. 

 

Responses of TSD to N rates 

TSD Graded by Weight 

Multiple researchers over the past 5 decades have consistently reported observing a 

positive influence of N on TSD at harvest, mostly when it is measured as the proportion or 
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absolute quantity of yield above a weight or diameter threshold (Arsenault et al., 2001; Gao 

et al., 2018; Porter & Sisson, 1991; Schippers, 1968a). Adopting the Travis (1987) model, 

Wurr et al. (1993) studied the effect of N on TSD from 9 potato experiments spanning 3 

years in Cambridge, England where TSD was described as the coefficient of variation (CV) in 

tuber diameters for each plot. The authors observed that increasing N rates also increased 

and explained 68% of the CV in combined 3-year data, which suggests that increasing N 

leads to more uniform proportions of tubers in variable grade sizes across the range. In 

contrast, Porter and Sisson (1991) reported significant positive quadratic relationships 

between N rates and TSD, calculated as the percentage of large (> 0.23 kg) tubers, where 

proportion of marketable tubers increased linearly or in a quadratic polynomial by between 

8 and 24% in comparison to the control when subjected to a rate of 90 N kg/ha over 3 years. 

The percentage of yield in the > 0.23 kg size class further increased at the expense of smaller 

size classes with increasing N rate (Figure 4) and optimized either at 180 N kg/ha or 135 N 

kg/ha depending on whether a nitrogen-fixing legume crop preceded the experiment or not. 

Bélanger et al. (2000) corroborated the positive asymptotic relationship between fertilizer N 

rate and marketable tuber yield and found that the absolute marketable yield optimized at 

175 N kg/ha and 240 N kg/ha in 1999 and 2000 respectively though their threshold weight 

of marketable tubers against small unmarketable tubers was not disclosed. 

 



29 

 

 

Figure 4:  Effect of nitrogen rates (0-270 kg/ha) on the proportion of small, medium and 

large tubers in the yield. Adapted from Porter and Sisson (1991). 

To assess TSD and how it shifts with any treatments, it makes more sense to compare 

treatments in terms of their effect on the probability density of a desired class of tubers 

(preferably the modal class) than absolute yield values, which are confounded by variation 

in tuber numbers per plot and other less-understood phenomena like tuber bulking rates.  

Gao et al. (2018) conducted a 3 year N trial with 0 or 100 kg/ha N applied on the Russet 

Burbank potato variety and classified tubers into undersize (<85 g), small (85–170 g), 

medium (170–340 g), and bonus (>340 g) size classes, considering all tubers weighing over 

85 g as “marketable”. Regardless of the application method, N increased the ratio of 

marketable to total yield by 6% from 0.87 to 0.93. While this is lower than the results from 

the earlier study by Porter & Sisson (1991), it corresponds with the lower maximum rate of 

nitrogen used. Additionally, the huge difference in the threshold weight for marketable 

tuber classification between the Porter & Sisson (1991) and Gao et al. (2018) study (230 g 

and 85 g respectively) confounds the interpretation of the differences. Figure 4 and Figure 5 

illustrate the variability in TSD in the two studies. 
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Figure 5: Effect of nitrogen rate (0-100 kg/ha) on the percentage of culled, small, medium 

and large potato tubers in the final yield. Adapted from Gao et al. (2018) 

 The results from Gao et al. (2018) show that TSD followed a Gaussian distribution in both 

the non-fertilized and 100 N kg/ha fertilized treatment, with a considerable gain in medium 

and large tubers in the fertilized treatment.  In contrast, the results from Porter and Sisson 

(1991) show linearly decreasing proportions in the non-fertilized treatment, followed by a 

Gaussian distribution at 90 N kg/ha then linearly increasing proportions at 180 N kg/ha and 

270 N kg/ha.  In both studies, N addition favoured the production of tubers of higher weight 

but there was significant evidence (P<0.05) of a decrease in specific gravity of tubers with 

increasing N rate in the Porter and Sisson (1991) study. This has been historically 

corroborated by several authors including Schippers (1968), White and Sanderson (1983), 

and more recently by Caldiz et al. (2018), suggesting the accumulation of more water per 

unit dry matter in larger tubers. Under this premise, it can be hypothesized that factors 

which increase the dry matter content of tubers potentially correlate negatively with the 

tuber size in units of linear measurements (i.e. diameter and length). Due to the common 

practice of grading tubers through square meshes of predetermined diameters desired for 
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downstream processing (Taylor et al., 2018), it is important to examine the effect of soil 

nutrients on TSD with tubers classed by their diameter.  

 

TSD Graded by Diameter 

Arsenault et al. (2001) studied the yield response curves of 8 potato varieties to 0 to 224 N 

kg/ha in Harrington, Prince Edward Island, Canada, quantifying TSD as the ratio of Canada  

Number 1 (51-89 mm) size grade yield to the total yield. Since the Canada Number 1 size 

grade represented the medium grade in the range of tuber sizes observed (0 to over 114 

mm diameters), a high TSD ratio meant a stronger central tendency in the distribution. A 

consistent positive increase in the ratio from 0.65 to 0.8 was observed as fertilizer rate 

increased from 0 to the lowest rate of N applied (~150 kg/ha) respectively across 7 studied 

varieties. Any further positive responses to incremental N doses were highly dependent on 

variety and plant spacing. While this suggests a general positive relationship between N rate 

and TSD, recent results from Boydston et al. (2017) showed no significant effect of N rate 

(range 34 – 101 N kg/ha) on the proportion of marketable tuber yield (0.62 in Bintje variety 

and 0.53 in Ciklamen variety) in early harvested potatoes when TSD was measured as the 

proportion of a modal (marketable) tuber size grade in the total yield. In this study, tubers 

were classified as undersized (< 25 mm diameter), marketable (25 to 38 mm diameter) and 

oversized (> 38 mm diameter). As an early-harvested crop, TSD was largely dependent on 

the tuber bulking hierarchy at the time of the desiccation as the tubers were still bulking, 

therefore the study illustrates the inadequacies of using N to improve TSD in specialty early-

harvested potato markets. 
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Figure 6: Effect of nitrogen (N) rate (0-200 kg/ha) on the percentage of small, medium and 

large potato tubers in the final yield. Adapted from Cambouris et al. (2007). 

To test the practical application of variable N rates for TSD optimization in a precision 

agriculture context, Cambouris et al. (2007) tested the effect of five ammonium nitrate rates 

(0–240 N kg/ha over three years) and application timings on TSD three years in Quebec, 

Canada. Tubers were classified as culls (<47 mm), small (47 ≤ diameter≤ 56 mm), medium 

(57 mm ≤ diameter ≤87 mm) or large (88 mm ≤diameter ≤112 mm). In all three years, 

increasing N rate increased the proportion of large tubers and decreased the proportion of 

small tubers (Figure 6). Increasing N rate also increased the percentage of medium tubers 

from 0.71 to 0.77, however, this increase was observed at 50 N kg/ha and no further 

consistent trend was observed above that rate, suggesting that the desired TSD was 

optimized at the low N rate. Similar results were reported by Fontes et al. (2010) who 

assessed TSD as the proportion of a modal tuber size class (33 mm < diameter < 85 mm) on 

a distribution with a range truncated at 85 mm due to non-observance of large tubers. 

In a recent main-crop field study, Maltas et al. (2018) studied the effect of five doses of 

ammonium nitrate (0, 80, 120, 160 and 200 N kg/ha) on the central tendency of the TSD 

measured as the proportion of medium sized (42.5–70 mm) marketable tubers. Compared 
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to the non-fertilized treatments, the proportion of marketable tubers increased by up to 

11% with the addition of N at 80 kg/ha in the first year and 120 kg N in a subsequent year 

then plateaued. Since the non-fertilized and 200 N kg/ha treatments had a negative effect 

on the percentage of marketable tubers this study represents a recent addition to the 

generally established trend of a positive quadratic effect of N of the proportion of 

marketable tubers, optimizing between 100 and 200 kg/ha N as reported by other authors.  

Many studies over the past 10 years back up the hypothesis that the total tuber yield 

increases with the rate of N. However, only a few studies, most of which have been 

reviewed here, discuss the increase in terms of proportions of marketable yield, which is 

more important to farmers. Indeed, if the yield gains realized by addition of N occur mostly 

in unmarketable tubers or less profitable size classes within the marketable range, the 

advantage is lost or reduced at the grading stage. Fertilizer strategies for maximizing the 

proportion of marketable tubers of the highest market value are therefore a key area of 

interest, which spurs interest in researchers to collect TSD data though it is rarely effectively 

utilized. The weight of evidence from published peer-reviewed research shows that 

increasing N rate optimizes TSD towards higher probability densities of large marketable 

tubers. A single inconsistency to this consensus was reported by White and Sanderson 

(1983), who found that increasing N rate from 67 N kg/ha to 201 N kg/ha only increased 

Russet Burbank and reduced Kennebec marketable tuber proportions by one percentage 

point. Long et al. (2004) also found no effect of N rate above 200 kg/ha on the proportion of 

marketable tubers as per the US classification system, though the high rates of N used mean 

the results might be in general agreement with most studies that found that TSD is 

optimized at N rates below 200 kg/ha. This review shows that wherever marketable tubers 

are classified as all tubers above a size threshold, N generally improves the proportion of the 

marketable component of yield and is generally optimized below 200 N kg/ha in field 

experiments. As reported by Fontes et al. (2010), the trajectories of the response curves of 

marketable yield seem to mirror those of total yield, and over-fertilization beyond 300 N 

kg/ha has a detrimental effect on yield (Long et al., 2004) and specific gravity (Porter & 

Sisson, 1991). Adopting the findings that yield and proportion of marketable yield optimize 

at similar N rates, finding a critical delivery method for maximizing the proportion of 

marketable yield at or below the optimized N rates seems to be the most direct way of 
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minimizing grading-related yield losses. This can potentially be done by determining the 

critical time for N delivery that maximizes the left skewness of a TSD, though there is limited 

availability of definitive studies in this regard. 

Nitrogen Timing 

Some farmers strategically grow potatoes in sandy acidic soils for easier tuber growth and to 

minimize the chances of Scab(Hawkins, 1954; Houghland, 1960). Poor water holding 

capacities of sandy soil comes with the risk of nitrate leaching which causes problems in 

maintaining an adequate supply of nitrogen at the peak of its demand during tuberization 

and bulking (Prunty & Greenland, 1997) in management programs where nitrogen is applied 

before or at planting. As a result, there are many studies concerning the optimization of 

fertilizer N delivery through split applications between planting and projected time of peak 

demand (tuber initiation or tuber bulking stage). However, most of the studies over the past 

decade have focused on the effect of fertilizer timing on total and marketable yields but 

stop short of evaluating the effects of the treatments on the overall TSD due to 

experimental design limitations. The primary designs of many fertilizer timing studies enable 

the evaluation of the effect of the interaction between timing and rate with respect to yield 

only. To evaluate the effect of splitting applications, a single rate of N needs to be tested in 

two or more treatments, one including the full rate at pre-plant then others with the 

desired splitting levels. With such a design, Cambouris et al. (2007) showed that splitting N 

applications between planting and hilling generally increases tuber yield as corroborated by 

Ojala et al. (1990) and other studies. However, the authors caution that the treatment effect 

ultimately depends on downstream stages of the nitrogen cycle as influenced by localized 

soil physicochemical properties and the form of N applied. In the Gleysols and Podzols with 

4-5% nitrate N tested by the authors, there is a trend towards increasing the proportion of 

medium-sized tubers at the expense of large sized tubers. TSD was measured by diameter 

but the visual evidence (Figure 7) shows that the effect size is very small (~4% increase in 

medium sized tubers) within the tested range.  
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Figure 7: Effect of nitrogen (N) timing on the percentage of small, medium and large potato 

tubers in the final yield. Adapted from Cambouris et al. (2007). 

Similarly in TSD measured by weight, the merits of splitting nitrogen application between 

planting and hilling (40% UREA at planting, 60% at hilling) are supported by evidence from 

Gao et al. (2018) where splitting provided the best option for minimizing the proportion of 

small tubers and maximizing the proportion of medium-sized tubers (Figure 8) with small 

margins. Furthermore, Kelling et al. (2015) tested split applications of nitrogen between 

emergence, tuberization and 20 days after tuberization (DAT) and reported that the effect 

of N splitting was more prevalent on TSD than yield.  When the tubers were separated into 

<113, 114 to 170, 171 to 284, 285 to 370, 371 to 454, and >454 g size categories, the 

authors report observing significantly fewer tubers in the <113g and 114 to 170 g size 

categories, and more in the 171 to 284 g category when the N was split into three 

applications (i.e. Emergence, tuberization and 20 DAT) compared to two and four 

applications. These studies open up the possibility of optimizing medium tuber size using N 

at tuber initiation and presents a research question warranting more controlled trials to 

potentially elucidate the effects that were confounded by nitrogen rates in Cambouris et al. 

(2007). 
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Figure 8: Effect of split nitrogen application on the percentage of culled, small, medium and 

large potato tubers in the final yield. Adapted from Gao et al. (2018). 

2.4.2.2 Effect of Potassium and Sulphur Fertilization on TSD 

The influence of K fertilization on potato yield and TSD is widely studied and soil K 

replacement based on crop removal is generally accepted as a management strategy in 

commercial production systems. These recommendations are mainly based on early findings 

from Dickins et al. (1962) and Birch et al. (1967) and more recently by Allison et al. (2001) 

who recommends the use of no more than 210 K kg/ha for yield optimization. In TSD 

studies, Simpson et al. (1973) applied incremental quantities of K (0-240 kg/ha) and Mg (0-

54 kg/ha) in a factorial design to evaluate the main effect of the two nutrients and their 

interaction on yield and TSD. K application had no significant effect on final tuber yield 

except in 1 site where application of K in excess of 70 kg/ha showed an increase in total 

tuber yield. This site was found to have a historical record of low K concentrations. The 

authors however found that application of K in excess of 70 kg/ha generally increased the 

yield of ware-sized tubers (> 57 mm diameter) by a mean of 1.3 t/ha while the yield of seed-

sized potatoes (32-57 mm) was reduced by margins ranging from 0.25 t/ha to 6 t/ha. These 

results are consistent with the authors’ previous works (Simpson, 1962; Simpson & Crooks, 

1961) as well as that of Henderson (1965), Dickins et al. (1962) and Arora (1987). In order to 
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describe the elasticity of the tuber size distribution, Simpson et al. (1973) calculated the 

ware-sized to seed-sized ratio on all their data points and report a range of 0.1 to 2.0 which 

suggests a highly elastic distribution, finding that the treatments with higher concentrations 

of K tended to cluster on the higher end of the range. More recently, Panique et al. (1997) 

also found that the yield proportion of US No 1 size tubers (> 51 mm diameter) in the total 

yield increased with K rate up to 332 K kg/ha in 5 of 11 experiments conducted over 11 

years, with the remaining sites not responding due to a high soil K test. Similar observations 

were made by Haase et al. (2007) and Li et al. (2015), providing recent evidence to the 

historical observations of a positive influence of K on TSD and justification for its continued 

use in agronomic management recommendations. 

Henderson (1965) and Dickins et al. (1962) found that the composition of K fertilizer also has 

an effect on TSD. In both studies, the effects of KCl and K2SO4 on TSD were compared, with 

consistent results in both experiments showing that incremental concentrations of KCl 

significantly (P<0.05) favoured the production of ware grade (>57 mm) tubers (Figure 9) 

while K2SO4 favoured the production of seed-grade (31-57 mm) potatoes. These results 

were corroborated by Nabi et al. (2000) and form the basis for the widespread 

recommendation of KCl for tuber size maximization. 
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Figure 9: Effect of Potassium (K) fertilizer type and rate on the percentage of large potato 

tubers in the final yield. Adapted from Dickins et al. (1962). 

In an attempt to explain the mechanisms behind the contrasting effects of KCl and K2SO4 on 

TSD, Beringer et al. (1990) carried out plant tissue analysis of plants treated with KCl and 

K2SO4, focusing on the effect of each fertilizer on osmotic potential in leaf cells as a proxy to 

cell expansion potential. Plants treated with K2SO4 were found to have significantly higher 

osmotic potential and less water content than KCl treated plants (P<0.05). Consequently the 

K2SO4 treated plants had higher dry matter content owing to a larger pool of K from the 

dissolution of K2SO4, which is in agreement with findings from Panique et al. (1997) that 

potatoes from KCl treated plots had significantly lower specific gravity than K2SO4 when the 

treatments were compared at equivalent rates. Additionally, cell sap from KCl treated plants 

had less K content than those from K2SO4 plants, which Beringer et al. (1990) suggests may 

be a driver of phloem loading and transportation of photosynthetic products to the tubers, 

explaining the higher dry matter content in the K2SO4 treatment. 

As noted from the Henderson (1965) experiment, the larger pool of K after the dissolution 

of K2SO4 and the subsequent high dry matter content does not always result in the large 

tuber sizes observed by Simpson et al. (1973) study, which may point to a secondary effect 

caused by the anion SO4
2-.  Beringer et al. (1990) reported that cell sap from K2SO4 treated 
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plants had significantly larger concentrations of organic anions than the KCl treatment. 

Panique et al. (1997) reported that K2SO4 treated plots produced more large-size tubers (> 

170 g) than KCl, up to 280 K kg/ha applied. However, beyond the optimum rate, tuber yield 

decreased for K2SO4 but remained stable for KCl. While the composition of the organic 

anions was not analysed in the Beringer et al. (1990) study, it may be hypothesized that the 

reconstitution of SO4 into protein structures in the K2SO4 treatment may have been 

responsible for the large concentrations of organic anions, which may potentially explain 

the higher dry matter content as suggested by Barczak et al. (2013). Meanwhile, the KCl 

treatment’s lower osmotic potential favours the exertion of turgor pressure which may be 

responsible for faster cell expansion with higher water content (Laboski & Kelling, 2007). 

These results therefore point to a potential influence of sulphur on potato TSD, which has 

not been extensively studied.  

2.4.2.3 Effect of Phosphorus on TSD 

Potato tubers are known to be the primary sink of absorbed P, containing up to 83% of all P 

in plant biomass (Houghland, 1960). The number of stolons produced by a potato plant is 

positively related to the concentration of phosphorus in its growth media, which has a direct 

impact on the tuberization potential of the plant and subsequently yield and TSD 

(Houghland, 1960; O’Brien et al., 1998). Potato yields respond positively to P fertilizer 

application even in soils known to have high residual levels of P. This is due to the high 

concentration of readily available forms of P in fertilizers compared to soil residual P, which 

is often found in highly stabilized precipitates of aluminium or iron in the acidic soils where 

most farmers grow potatoes strategically to control scab (Hawkins, 1954; Houghland, 1960). 

Freeman et al. (1998) applied a range of P rates to Russet Burbank (0 to 475 P kg/ha) and 

Kennebec (0 and 120 P kg/ha) potatoes to evaluate the yield response curves in relation to P 

fertilization. They reported that Russet Burbank showed significant (P<0.05) increases in 

processing-quality yield (tubers weighing > 75 g) in response to applied P at 11 out of 12 

experimental sites while similar responses were noticed at 6 of the 9 sites for Kennebec. 

Additionally, a varietal effect was noted with yield responses curves reaching an asymptote 

at 27 mg/kg for Kennebec while no asymptote was reached for Russet Burbank. Freeman et 

al. (1998) also noted that P application skewed TSD in favour of large tubers when the TSD 

was measured as the percentage of large tubers (> 280 g) per plant. Recently, the influence 
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of soil inherent resin-extractable P on TSD was observed by Fernandes and Soratto (2016), 

who found that soils with a P analysis of 36 mg/dm3 produced a significantly higher 

percentage of marketable tubers (>45 mm diameter) than those with inherent low P (14 

mg/dm3) as illustrated in Figure 10. In contrast, Rosen and Bierman (2008) found that 

incremental rates of P fertilizer between 0 and 74 kg/ha did not affect the percentage of 

marketable (>85 g) Russet Burbank yield in loamy sand soil with medium to high soil test 

phosphorus concentrations (25 to 33 mg/kg Bray P1). This was attributed to an increase in 

the number of small tubers happening concurrently with a reduction in the percentage of 

large tubers (>285 g) as P rate increased (Figure 11). Quoting Westermann & Kleinkopf 

(1985), Rosen and Bierman (2008) attribute this response to a shift in dry matter 

partitioning from tubers to vegetative growth as leaf P increased. This is strengthened by 

the further observation that increasing P rates resulted in an increase in the number of 

stems per plant though the response was not consistent across sites due to many 

uncontrolled confounding variables, of which the authors single out Ca content as a 

dominant player due to its ability to fix phosphorus in the soil 

 

 

Figure 10: Effect of inherent soil phosphorus (P) concentration on potato tuber size 

distribution. Adapted from Fernandes et al. (2016). 
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Figure 11: Effect of Phosphorus (P) rates (0-74 kg/ha) on the percentage of various tuber 

weight classes in the final yield. Adapted from Rosen and Bierman (2008). 

. Arora (1987) also found that increasing P rate also increased the proportion of small tubers 

per square metre by the 90th day after planting at the expense of medium and large tubers, 

which is further corroborated by Birch et al. (1967) and Prummel and Von Barnau-Sijthoff 

(1984).The response of TSD to P levels can be affected by interactions with other elements 

in the soil.  P is known to exhibit antagonistic interrelationships with zinc (Zn) and 

magnesium (Mg) under alkaline conditions and Fe and Al under strongly acidic conditions 

(Rietra et al., 2017). These four elements precipitate P in soil solution and render it 

unavailable for plant uptake, hence confound the effect of P fertilization on agronomic 

parameters. Boawn and Leggett (1964) first reported the antagonistic effect of excess P 

fertilization on Zn availability which induced Zn deficiency, with subsequent studies by 

Soltanpour (1969), Jackson and Carter (1976) supporting the results. The antagonistic 

relationship between Zn and P has since become a well-studied subject in literature. Barben 

et al. (2010) tested the effect of incremental concentrations of available Zn in growth 

solution on the P uptake of Russet Burbank potato plants. Their findings show that increase 



42 

 

in concentrations of Zn led to an accumulation of P in potato shoots and a decline of P in 

potato roots. Since potatoes tend to accumulate most of their P in the tubers rather than 

the shoots (Houghland, 1960), future research should incorporate the antagonistic effects of 

Zn on P uptake and sink partitioning and how this affects the tuber size and bulking rates. 

These results highlight the limited availability of often conflicting published research on the 

complex interactions between P and other nutrients in relation to TSD. The effect of P on 

TSD and any usefulness in its targeted soil amendment in production management is 

therefore still an area that requires further studies to eventually generate consensus. 

2.4.2.4 Secondary Macronutrients 

Ca is a divalent cation which is predominantly concentrated in plant apoplasts while its 

water soluble form is predominantly stored in the vacuoles where it plays a role in 

maintenance of plant vigour and stiffness and delays maturity (Hirschi, 2004). Calcium is 

also known to ameliorate soil salinity by replacing Na from exchange surfaces to make it 

available for leaching thereby lowering the soil CEC (Hadi & Karimi, 2012). Additionally, 

calcium precipitates phosphorus into poorly soluble forms which become unavailable for 

plant uptake in calcareous soils (Naeem et al., 2013) and alkaline soils (Tunesi et al., 1999) 

which may therefore be expected to influence TSD. 

Ozgen and Palta (2005) found a significant negative effect of Ca fertilization on tuber 

number by treating Russet Burbank potatoes with Ca in a calcium ammonium nitrate (CAN) 

form and a calcium chloride form (CaCl) in comparison with non-treated controls. Both the 

CaCl and CAN had significantly (P<0.05) fewer tubers than the non-treated controls but 

there was no significant difference between them, proving direct causation of the 

tuberization inhibitory effect by Ca rather than the activity of the counter-ions in the 

fertilizers (e.g. Cl). Additionally, Ozgen and Palta (2005) reported no significant difference in 

total tuber yield between Ca treatments and the controls. This suggests that Ca fertilization 

can be used to improve TSD toward larger grades since the total tuber biomass is 

partitioned among fewer tubers, which is in agreement with Ozgen et al. (2003). Indeed, 

Ozgen and Palta (2005) report a significant positive advantage in mean tuber weight and the 

proportion of tubers >56 g in Ca-treated plots over the controls, in agreement with Simmons 

and Kelling (1987) who found up to 16% increase in the marketable tuber grade (>51mm) 

with a 336 kg/ha calcium addition at the expense of small tubers. However, a similar study 
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using CAN, CaCl and Gypsum by Kleinhenz et al. (1999) reported that Ca application did not 

alter tuber grade in comparison with non-treated controls although the concentration of Ca 

in tubers was higher in the Ca-treated plots. Most studies on Ca fertilization focus on 

understanding the Ca uptake pathway from the soil and the mechanisms controlling its 

accumulation in tubers or lack thereof. It is mainly accepted that Ca is co-assimilated into 

the plant through the roots following the transpiration stream (Busse & Palta, 2006; Kratzke 

& Palta, 1985; Wiersum, 1966), though there is also evidence of direct Ca uptake by tubers 

in experiments with radioactively labelled Ca (Habib & Donnelly, 2002). Busse and Palta 

(2006) and Habib and Donnelly (2002) both further determined that radioactively labelled 

Ca accumulates in above-ground biomass in a Ca gradient that is sustained regardless of the 

entry pathway of the Ca. A proposition by Ozgen and Palta (2005), supported by Gilroy and 

Jones (1993) and Bush et al. (1993), is that Ca uptake is stimulated by GA3 which controls 

the production of α-amylase enzyme which contains at least one Ca molecule to maintain its 

activity. With GA being associated with delayed tuberization, this may explain the negative 

effect of Ca on tuber numbers as observed by Ozgen and Palta (2005). In conclusion, Ca is 

expected to affect TSD either directly by its effect on GA activity or indirectly through its 

influence on P availability on the exchange surface in calcareous and alkaline soil. However, 

more studies are required to add to the evidence from Ozgen and Palta (2005). 

Birch et al. (1967) analysed the effect of magnesium on potato tuber size and observed no 

general response in the yield of each size grade and the ware-sized to seed-sized ratio, 

which was consistent with findings by Holmes (1962) and Birch et al. (1967). Since K was a 

second treatment in the experiment (discussed earlier), the authors report that an increase 

in Mg concentration generally depressed the effect of increasing K concentration on TSD, 

particularly the yield of ware-grade potatoes. K fertilization over 70 kg/ha resulted in fewer 

tubers, which the authors attribute to stolon damage caused by the excessive K fertilization. 

The stolon damage was speculated to depress the number of tuber-bearing stolons thereby 

encouraging the oversized growth of tubers on the remaining stolons, but more Mg was 

associated with a reduction in this effect. There is very little evidence from research on the 

advancement of this hypothesis and the effect size of Mg on TSD is comparatively much 

smaller than can be expected from the primary macronutrients. This is reflected in the 

limited availability of studies with Mg as a treatment since the Birch et al. (1967) study. 
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As discussed earlier, the role of sulphur in the reduced efficacy of K2SO4 compared to KCl in 

maximizing tuber sizes is a rarely studied and often discounted (Simmons & Kelling, 1987) 

subject of speculation.  However, Caldiz et al. (2018) tested effect of three levels of S (0, 10 

and 20 kg/ha) on TSD and found that 61% of the variation in the proportion of small tubers 

(<50 mm) was explained by the variation in S content of the soil (P<0.05). Increase in 

sulphur concentration in the soil had a positive correlation with the percentage of small 

tubers in the final yield. With limited application of S in potato fields, its in-field variation 

may ultimately be correlated to in-field variations in TSD and the evidence from Caldiz et al. 

(2018) supports the hypothesis of an increase in small-sized tubers observed in K2SO4 

applications by Henderson (1965). 

2.4.3 The Influence of Soil Physical Properties on TSD.  

Soil physical properties like structure, texture and porosity can be reasonably expected to 

affect potato tuber development and size distribution, however, there is a limited supply of 

peer-reviewed literature on experiments that examine this relationship. Soil compaction is 

usually used as a one-size-fits-all proxy for describing the soil physical variations in 

commercial fields as impacted by heavy machinery traffic.  

Oijen et al. (1995) examined the effect of increasing soil penetration resistance on the root 

growth of potatoes and reported a high rate of root senescence with increased compaction 

due to limited aeration, without a significant effect on root length. Additionally a net 

reduction in nutrient (N, P and K) uptake was observed due to limited soil water movement 

as a consequence of reduced aeration. Observations by Ross (1986) also suggest that 

potatoes compensate for hard sub-surface pans by increasing the horizontal spread of their 

root system. Copas et al. (2009) tested the effect of heavy traffic compaction and subsoil 

tillage on TSD in Russet Burbank potatoes in a 3 year experiment. There was no effect of 

both compaction and subsoil tillage on the proportion of U.S. Number 1 potato yield 

observed over the three year period, mainly attributed to inconsistencies in the proportions 

of discarded and lower-grade tubers. An overall reduction in mid-sized tubers (113-170 g) 

was noticed across all three years but the reduction was not significant (P = 0.074).  

A similar study by Pierce & Burpee (1995), investigated the effect of compaction on TSD by 

comparing zone tillage and in-row subsoiling against conventional tillage. In line with 
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findings by Mundy et al. (1999), no significant advantage in TSD was observed in the altered 

tillage treatments over conventional tillage, however, a total yield advantage was recorded 

with zone tillage when in-row spacing was reduced from 36 cm to 25 cm. Multi-year 

experiments by (Sojka, Westermann, Brown, et al., 1993; Sojka, Westermann, Kincaid, et al., 

1993) however report an overall 7% increase in Grade-A tuber yield with zone subsoiling 

treatments, showing the possibility of optimizing tuber size with compaction control and soil 

texture improvements. 

Redulla et al. (2002) found inconsistent weak relationships between soil texture and tuber 

yield as well as tuber number. Overall, positive correlations between Clay content and tuber 

yield and number were observed while negative correlations were observed for Sand 

content. The authors concede that the models explained relatively low proportions (30%-

41%) of the variation in their data. As noted by Redulla et al. (2002), studies on the effect of 

soil texture on potato yield TSD are rare and the previously discussed limited influence on 

soil structure on potato TSD makes it an unlikely hypothesis to pursue.  In conclusion, the 

evidence in the literature shows that soil physical properties do not have as much impact on 

TSD as the soil mineralogical properties and plant phenotypic characteristics, however, the 

quantification of the extent to which compaction alters would help to reduce Gaussian noise 

in the spatial datasets and improve any TSD statistical models developed for TSD. 

2.4.4 Apparent Electrical Conductivity (ECa) 

ECa refers to the bulk electrical conductivity of the solid and liquid phases of the soil and is 

popular in precision farming as a quick method of non-destructive assessment of soil 

variability (A. N. Cambouris et al., 2006; Corwin & Lesch, 2003; Perron et al., 2018). 

Additionally, ECa is preferred over the determination of EC from soil solution extracts 

because of the large variability in soil solution concentrations over short distances within 

the field, which require intensive sampling and processing of undiluted soil solutions 

through labourious and costly pressurized extraction methods (Corwin & Lesch, 2003). ECa 

can be determined as the inverse of electrical current resistivity between a source electrode 

and receiver electrode in the field, which has been the preferred method of electrical 

resistivity measurement for determining soil salinity and ECa since the early 1990s (Corwin 

& Lesch, 2003). An array of four electrodes (two current sources and two receivers) are 

placed into the soil surface to measure differential current flow as influenced by the 
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subtending soil’s constituents, producing accurate measurements of resistivity and ECa in 

homogeneous soils. An alternative method that assures accuracy in non-homogeneous soils 

is the non-contact electromagnetic (EM) induction method where the loss in eddy currents 

between a transmitter and receiver are detected and converted to ECa readings (Corwin & 

Lesch, 2005). The most common EM meter is the EM-38 from GeonicsTM which can detect 

magnetic signals up to a depth of 1.5 m (Cambouris et al., 2006; Corwin & Lesch, 2003; 

Perron et al., 2018).  

Since ECa instruments measure the bulk electrical conductivity of all the phases of the soil, 

there are no deterministic models in use that infer the prevalence of a specific soil property, 

though highly accurate statistical models have been developed for measuring volumetric 

water content and salinity (Bouksila et al., 2008). In both the resistivity and EM methods, 

ECa values are additively influenced by the dissolved solute concentration of the soil 

solution as well as the water content, as a result, different factors control ECa at every 

measurement site, making it a necessity to calibrate ECa data with soil property data before 

making inferences (Perron et al., 2018). A typical ECa survey in precision agriculture 

therefore involves an initial intensive ECa data collection followed by stratified soil sample 

collection across the field based on the ECa map and the determination of soil factors that 

influence the ECa measurements through ordinary or partial least square regression or 

principal component analysis. Corwin and Lesch (2003) conducted ECa experiments to 

correlate the ECa values measured using the Geonics EM-38 sensor with soil 

physicochemical characteristics at 6 soil sampling locations. The results were site 

dependent, whereby volumetric water content had the highest correlation with ECa at one 

site while sodium adsorption ratio (0.89) and the concentration of boron (0.91) were 

dominant at another site. 

Valente et al. (2012) studied the effect of ECa on the soil properties of Typic Hapludox soils 

in a 20 ha field in Brazil using the resistivity method at electrode spacing of 20 cm and 40 

cm. This was followed by an intensive soil sampling of 141 points in an irregular mesh from 

which soil texture and chemical properties were determined. The results showed a relatively 

low range and mean of ECa values at both electrode spacings, with an average of 1.8 mS/m 

and a range of 0.4 to 5.24 mS/m. While the ECa values at the two electrode spacings were 

strongly correlated (r = 0.90), there was weak but significant correlation between ECa and 
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all the soil parameters measured including pH, P, K, Ca, Mg, Al, CEC and organic matter 

(Table 2). The highest correlation was found between ECa and available phosphorus with a 

coefficient of 0.43 which is close to the values reported by several other authors (A. N. 

Cambouris et al., 2006; De Caires et al., 2015). Valente et al. (2012) evaluated the soil 

property-ECa relationships using only Pearson’s correlations, however, observed 

insensitivity of ECa to variations in soil properties showed why deterministic models for soil 

properties cannot be developed with high confidence from ECa data.  

Perron et al. (2018), in an experiment  involving field-scale potato production, evaluated the 

efficiency of georeferenced ECa data collected at 30 cm and 1 m depths for the purpose of 

delineating management zones in two fields using unsupervised k-means clustering. The ECa 

data was analysed for correlation to spatially referenced soil physiochemical properties 

including texture, N, P, K, Mg Ca, Al and potato tuber yield. There was high contrast 

between the correlation of soil properties to ECa at the two study sites, revealing again the 

highly contextual nature of ECa data interpretation; for example, there was strong 

correlation between ECa and the percentages of clay (0.81), silt (0.61) sand (-0.71) and 

gravel (0.61) in field 1, while none of the particle sizes had a strong correlation with ECa in 

field 2. Clay content seems to correlate highly to ECa data due to its high electric charge 

capacity as noted in several studies (Carroll & Oliver, 2005; Medeiros et al., 2018; Rodríguez-

Pérez et al., 2011). The highest correlation coefficient in field 2 of the Perron et al. (2018) 

study was also between ECa and clay content at a non-significant -0.19 coefficient. 

Meanwhile, there was no relationship between particle size distribution (clay and sand) and 

ECa in studies by Singh et al. (2016) and Valente et al. (2012) as illustrated in Table 2. These 

findings point to the contextual nature of ECa data and the need to develop contextual 

models to understand the underlying determinants at each location. 
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Table 2: Correlation coefficients between ECa and a selection of edaphic factors from 3 

different studies. 

Soil Property RECA Valente 

et al. (2012) 

RECA Singh et 

al. (2016) 

RECA Perron et 

al. (2018) 

RECA Perron et al. 

(2018) 

Available P 0.465 0.228 -0.48 -0.31 

Mn 0.457 NS N/A N/A 

CEC 0.393 0.448 N/A N/A 

Ca 0.386 0.292 0.48 0.7 

pH 0.286 NS 0.36 0.29 

Mg 0.23 0.616 0.53 NS 

OM -0.178 0.121 N/A N/A 

Al NS -0.121 -0.66 -0.73 

Cu NS 0.371 N/A N/A 

Clay NS NS 0.81 NS 

Coarse Sand NS NS -0.71 NS 

 

Cambouris et al. (2006) used the Geonics EM-38 sensor to create an ECa map of a 13 ha 

commercial potato field and to delineate two management zones (MZs) using K-means 

clustering. The delineated MZs were found to show relative homogeneity in soil water 

regime and physicochemical properties, additionally, there was significant but weak positive 

correlation between potato tuber yield and ECa data with r values ranging between 0.25 

and 0.47 depending on the month of ECa data collection. This level of correlation was also 

observed by Whelan and Mulcahy (2017) who report a significant but weak correlation (r = 

0.22) between georeferenced ECa values and potato yield. 

Perron et al. (2018) also utilized K-means clustering to define management zones based on 

ECa and then compared differences in potato yields between the clusters using ANOVA to 

test the efficacy of ECa in maximizing the differences between zones. The delineation of 

MZs was effective in elucidating the spatial variability in tuber yield field 1 while no effect 

was observed in field 2 due to low within-field ECa variability, however, it can be noted that 

Field 2 had 36% more Ca with a highly significant (P<0.001) correlation to ECa (0.72). Ca was 
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the dominant contributor to variability of ECa in field 2 and the geospatial analysis reported 

a lower nugget ratio (15%) than field 1 (25%) which shows a higher spatial dependence. Ca 

activity is known to precipitate P at high pH (Naeem et al., 2013), as well as competing with 

equal and lower valence ions at clay surface complexes, thereby affecting their availability 

(Singh & Dahiya, 1976). It can be expected that weighting ECa values with Ca data may 

achieve a better correlation with soil available nutrients, hence improving delineation of 

management zones. The significant influence of soil mineral components on ECa provides an 

opportunity for using ECa as a unified proxy for understanding how soil variability affects 

TSD, however, no such studies have been identified in literature. 

To summarize the effect of edaphic factors on TSD, literature review shows that nitrogen, 

potassium, sulphur and calcium have probable effects that may be masked by interactions 

and confounding factors from other soil nutrients and the plant itself (e.g. plant density). As 

discussed above, P has been previously shown to affect TSD, however, there are also studies 

that have reported contrary results and there are significant antagonistic relationships 

between P and other minerals which need to be modelled in order to elucidate the P effect 

adequately. In the above review, one notices that TSD has been defined differently by 

different authors, with most describing it as a ratio of a desired category of yield to the total 

yield. This comes from the lack of global standardization of what TSD is. When probability 

distribution functions like the Weibull function are fitted onto tuber size data, a research 

question therefore exists whether the edaphic factors N, P, K, S, and Ca have any 

predictable effect on the distributions which can be controlled by farmers. Finally, the data 

for all these nutrients are usually collected at low sampling intensity due to cost limitations, 

therefore, to make use of the data in a precision agriculture context, near-continuous 

spatial data surface of these nutrients need to be generated by geospatial modelling or 

regression modelling with ECa data. 

2.5 Remote Sensing in Precision Agriculture 

Plant leaves are known to exhibit unique, species-dependent, responses to incident 

radiation, generally showing high absorption in the ultraviolet and blue spectra, high 

reflectance in the green spectrum, high absorption in the red spectrum and high reflectance 

in the near-infrared portion (Gates et al., 1965).  Chlorophylls and carotenoids account for 

99% of the reflectance attributed to leaf pigmentation (Tucker & Garratt, 1977). Variability 
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in the chlorophyll content, water content and cell-to-air space ratio in the leaves directly 

influences spectral reflectance of plants in the visible  (400-700 nm) spectrum (Cochrane, 

2000). Advances in digital image analysis technology have enabled the exploitation of this 

spectral sensitivity in the development of techniques for proximal and remote sensing of 

plant health from canopies. 

Physiological differences between plants cause different species to exhibit distinct spectral 

signatures which can be used to remotely detect or distinguish specific plants in the field. 

(Smith & Blackshaw, 2003) found evidence that plant species exhibit distinct spectral 

reflectance properties beyond the red-edge zone (>700 nm), enabling a species detection 

accuracy of up to 90%. Distinct spectral signatures in different grass species have also been 

widely reported and is partially responsible for the proliferation of computer vision based 

precision weed management applications (Singh et al., 2020). Such results strengthen the 

case for using spectral reflectance properties to distinguish plants at the cultivar level.  

The variation in reflectance of electromagnetic radiation by plants based on species and 

physiological condition has enabled the development of remote sensing applications for 

crop monitoring and precision agriculture. Soon after the launch of the Landsat Satellite in 

1972, Bauer (1973) used visible and NIR reflectance properties of crop canopies at 80 m 

resolution to classify crop species coverage in mid-western US with 83% accuracy. Since that 

time, the spatial resolution of satellites has improved from 80 m per pixel to sub-metre 

resolution, complemented by wider spectral resolution, which has enabled the development 

of an array of spectral indices for soil and canopy classification for use in precision 

agriculture applications (Mulla, 2013).  

Seelan et al. (2003) recorded the progress achieved in the use of remote sensing techniques 

in precision agriculture since the launch of the Landsat satellite in 1972. They identified the 

biggest limitation for the adoption of remote sensing in precision agriculture to be the lack 

of knowledge on the amount of remotely sensed data available and how it can be used for 

management decision support at the farm level. However, they also point to the need for 

improved spatial and temporal resolution to accompany the improvements in spectral 

resolution as well as improved integration with meteorological and agronomic data. This 

section therefore reviews current techniques in acquisition of spectral data, popular 

vegetation indices reported in literature as well as their applications in potato yield 
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prediction. The goal of the review was to identify current research questions within the field 

of remote sensing for determination of potato plant density, stem density and yield 

prediction, which are pertinent to the modelling of TSD. 

2.5.1 Data Acquisition and Spectral Analysis Techniques 

Satellite image data is available in the public domain at a global scale with frequent 

temporal coverage through the repositories of Landsat-8 (up to 30 m resolution, 16 day 

revisit time) since 1972 (Bauer & Cipra, 1973) and the Sentinel (up to 10 m resolution, 5 

days revisit time) satellites since 2015 (Szantoi & Strobl, 2019). Due to the coarse spatial 

resolution of satellite imagery, pixels of crop canopy data are often composites of reflected 

light from soil and the canopy which confounds interpretation of reflectance data, 

necessitating the use of spectral un-mixing algorithms and soil adjusted vegetation indices 

to improve data quality (Mulla, 2013). Additionally, the data quality of spectral data is often 

affected by cloud cover and may need correction to account for the dispersing effects of the 

atmosphere on reflected radiation as well as interpolative smoothing to generate data at 

non-sampled spectral positions if the spectral resolution of the deployed sensor does not 

cover exact desired wavelengths (Moran et al., 1997). The proliferation of consumer-grade 

unmanned aerial vehicles (UAVs) solves the problems of spatial resolution, cloud cover and 

atmospheric dispersion as well as providing a degree of autonomy for spatial analysts in 

acquisition of aerial images when required (G. Yang et al., 2017). However this comes at the 

expense of spectral resolution due to the limited spectral range of consumer-grade sensors 

mounted on UAVs (Sankaran et al., 2017; Yang et al., 2017).   

A typical UAV unit for field-based crop phenotyping and precision agriculture consists of an 

unmanned aircraft equipped with electromagnetic radiation sensors and GPS technology 

which enables georeferenced acquisition of aerial imagery at user-defined spatial resolution 

(G. Yang et al., 2017). UAVs hold an advantage over manned aircraft and satellite imagery 

due to their lightweight nature, however their low payload currently limits the type of 

sensors that can be deployed (Chapman et al., 2014). Consequently, visible light and 4-band 

multispectral sensors are most commonly used for field based phenotyping and precision 

agriculture Yang et al. (2017). High spatial resolutions achieved by low flight altitudes enable 

a high degree of separation of features in UAV images (Sankaran et al., 2015) allowing 

accurate ground-level feature classification which is not possible with low-resolution 



52 

 

satellite images. Digital orthorectification is mostly achieved using commercial image 

analysis software like Pix4dtm and Ag-Photoscantm which deploy feature matching and 

structure-from-motion algorithms to stitch images in space and correct for some pixel 

distortion (Brenner et al., 2018; Yang et al., 2017), enabling the creation of high-resolution 

complete surfaces of the UAVs flight path hence covering the whole field-of-interest 

(Brenner et al., 2018; Holman et al., 2016; Yang et al., 2017). 

Apart from spectral index based image analysis, UAVs have been used in phenotyping of 

structural canopy metrics like plant height and leaf area index (LAI) (Holman et al., 2016; 

Xiong et al., 2017). These metrics are derived from the calculation of normalized digital 

surface models, defined as the difference between the digital elevation model of the canopy 

and the elevation model of the underlying ground (Holman et al., 2016). The elevation of 

the underlying ground is either estimated from extrapolated models of bare patches of soil 

within the canopy orthoimage or from a separate orthomosaic of imagery acquired before 

crop emergence (Holman et al., 2016).  

While above-ground canopy data are relatively easy to collect with UAVs and process with 

GIS software like arcGIS, correlation between above-ground variation and potato tuber yield 

and size distribution within a field would need to be established first before such UAV-based 

phenotyping can be useful. For example, temporal plant height evaluation can be important 

in assessment of growth rates and biomass accumulation, which can be potentially linked to 

branching and hence secondary stem development (Domagalska & Leyser, 2011), which are 

important in the development and final TSD of a crop (Harris, 1992). Various spectral 

analysis techniques have been developed to extract useful information from radiometric 

canopy data in the form of vegetation indices with wide-ranging applicability in the 

description of spatial variability of vegetative health for decision support in precision 

farming. A review of these vegetation indices is therefore warranted to identify high 

potential indices for use in prediction of potato yield and size distribution. 

2.5.2 Vegetation Indices and their Applications in Potato Production 

One of the main areas of interest for satellite imagery after the launch of the Landsat 

satellite in 1972 was in the field of vegetation monitoring for agricultural management 

decision support, particularly in fertilizer management and cattle ranch management. With 
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this in mind, (Pearson & Miller, 1972) developed the first vegetation indices to enhance the 

contrast between vegetation and soil in satellite imagery using the Ratio Vegetation Index 

(Equation 1) and the Vegetation Index Number (Equation 2) abbreviated as RVI and VIN 

respectively. Being based on simple ratio, it was however noticed early on that the two 

indices are less sensitive in non-dense vegetation which may cause misclassification in early 

season crops and unhealthy canopies.  

𝑅𝑉𝐼 =
𝑅

𝑁𝐼𝑅
………………………………………………..……………………………………………..……................... (1) 

 

 

𝑉𝐼𝑁 =
𝑁𝐼𝑅

𝑅
  …………………………………....……………………………………………………………………………… (2) 

(Rouse et al., 1973) developed a band ratio parameter (BRP) using the difference in 

reflectance between blue and NIR wavelengths detected by the Landsat satellite divided by 

their sum (Equation 3). Regression analysis was used to test this BRP with ground-truth 

values for canopy greenness, and vegetation moisture content, with results showing R2 

values of 93% and up to 89% of the variation explained by canopy greenness alone. Their 

study was based on 8 sampling points of 7 km2 each and their data was corrected for sun 

angle and atmospheric attenuation through square root transformation. The high 

effectiveness of this BRP has led to wide adoption as the most commonly used vegetation 

index in agricultural remote sensing, now referred to as the normalized difference 

vegetation index (NDVI) calculated using Equation 3. 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
………………………………………………………………………………………….…………..… (3) 

NDVI has been applied in a wide range of analyses as a proxy for global precipitation, 

agricultural crops presence, temporal analysis of land use patterns (Rokni & Musa, 2019), 

yield prediction in cereals (Sultana et al., 2014) and crop yield in simulation models 

(Doraiswamy et al., 2004). Most studies typically establish the relationship between NDVI 

and dependent variables of interest through linear regression models. However, the efficacy 

of NDVI as a proxy for understanding the major parameters of interest in agriculture (i.e. 

yield, heat and precipitation) is highly contextual with mixed results from different studies 
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(Turvey & McLaurin, 2012). Leblois and Quirion (2013) report that NDVI was more 

correlated to crop biomass but was a poor indicator of yield, a finding that hinders wide 

scale adoption of NDVI in yield prediction (Turvey & Mclaurin, 2012). Consequently, more 

studies are required to establish context-specific thresholds for correlating NDVI to harvest 

indices in statistical models. 

The NIR band used in NDVI calculation is strongly correlated to leaf area index since NIR light 

is largely reflected by canopies as a function of mesophyll layer development and green 

vegetation density (Tucker, 1979). This means the NDVI may be more correlated to canopy 

metrics that quantify leaf development and plant population, which is more relevant to 

potato stem number studies. Statistical modelling of such a relationship would enable 

remote evaluation of potato plant population and its spatial variation.  

2.5.3 Application of the NDVI in Potato Studies 

Sankaran et al. (2017) used NDVI to segment emerging potato plant clusters from images 

taken at 15 metres above ground using a UAV at 32 days after planting. Thresholding was 

used to segment 8-bit NDVI images into binary images of plant clusters and non-plant 

clusters, the plant clusters were then counted to give a computer-generated plant count 

which had r values of up to 0.82 when correlated to manual plant counts. The ability to 

assess plant counts using aerial imagery is important as it can be used to check the 

efficiency of planting operations and refine yield expectations, however, estimations of crop 

emergence are less accurate when potato canopies consolidate and gaps are covered by 

sideways growth of the canopy (Sankaran et al., 2017). Apart from object-based plant 

counts, Sankaran et al. (2017) used the sum of NDVI values in all the pixels (sum-NDVI) per 

plot to generate consolidated NDVI values for an entire plot and correlated them with 

manual plant counts. The authors report a highly significant correlation (P<0.0001) for the 2 

potato varieties under the study with r values of 0.62 and 0.73 using UAV images collected 

at 32 days after planting. The correlation coefficients diminished with subsequent imagery 

collected at 37 and 43 days after planting but remained significant up to the 43rd day with 

albeit r value of 0.38. It must be noted that the computation of sum-NDVI essentially 

reduced the spatial resolution of each plot in the study to 1 pixel (the plot size was ~6 m by 

1 row). These findings therefore suggest the possibility of phenotyping plant emergence 

rates remotely using consolidated 5 m resolution satellite data. With public domain data 



55 

 

from visible and NIR bands available from the Sentinel 2A and 2B satellite at 10 m resolution 

(Revel et al., 2019), there is a possibility of phenotyping plant counts using satellite imagery. 

The temporal deterioration of the correlation between sum-NDVI and plant counts would 

be a cause of concern, however the maintained significance of the correlation over a 10 day 

period gives an opportunity for optimizing image acquisition time for maximum NDVI 

expression and cloud free satellite days. 

With a goal to achieve a level of potato yield prediction, Bala and Islam (2009) extracted 

temporal mean NDVI values from low resolution (500 m) TERRA MODIS imagery and 

regressed them with potato yields from area production estimates of 0.5 ha farms, finding a 

highly significant relationship with an R2 value of 0.84 and an average error of 15% when the 

study was repeated in the subsequent year. While this is a promising result, its repeatability 

can be subject to debate due to the large discrepancy between the sizes of the farms (0.5 

ha) and the resolution of the TERRA MODIS from which the NDVI was computed (25 ha). It 

can be hypothesized that the average NDVI of the region (which may be related to 

precipitation and overall suitability of the location for crop growth) has a significant effect 

on potato yield. Preceding to Bala and Islam (2009), a  similar study was conducted by 

Groten (1993) on regional millet yield in Burkina Faso where multiple regression models 

between temporal NDVI increments form the NOAA-AVHRR satellite and yield showed high 

predictability (R2 = 0.87), results corroborated by Rasmussen (1992). For precision farming 

applications at the farm level, there is need to develop similar models for potatoes with high 

spatial resolution.  

Al-Gaadi et al. (2016) developed predictive models of potato yield based on NDVI and the 

Soil Adjusted Vegetation Index (SAVI) from Landsat-8 and resolution Sentinel satellite data 

in simple linear regressions with farm-level potato yield samples, achieving predictive 

accuracies (R2) ranging from 0.39 to 0.65. The positive correlation of NDVI and potato yield 

has also been established with NDVI computed from handheld active sensors like the 

GreenSeekerTM with R2 values of up to 0.90 (Gómez et al., 2019), however the proximal 

nature of the sensing method is most suitable for small fields and lacks scalability for large-

scale farms. Such significant R2 values reported by multiple authors make a case for the 

inclusion of NDVI or SAVI as covariates in yield prediction models, however, no studies have 

linked NDVI to tuber size distribution. Testing this hypothesis would be highly dependent on 
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the ability to establish adequate spatial autocorrelation in field-observed variation in the 

phenological parameters, independent of planting-date manipulation.  

2.5.4 Other vegetation indices  

Apart from the NDVI, other vegetation indices have been developed for classification of 

spectral variability on vegetated surfaces at a spatial scale. Xue & Su (2017) and Bannari et 

al. (1995) reviewed a compendium of spectral indices which are most frequently used in 

remote sensing applications that deploy satellite imagery. It can be noted that most of the 

indices are developed to improve the classification of surfaces into vegetation, soil, water 

and man-made structures. Bannari et al. (1995) reviewed 24 indices for vegetation 

classification, with particular emphasis on indices that improve upon the NDVI by using 

visible and NIR frequencies to enable the accounting of non-vegetation effects in the coarse 

resolution of satellite imagery, however, except for a few deterministically established 

indices, most of the indices make use of statistically derived constants for telemetric 

correction which were developed from multispectral satellite imagery. As a result, NDVI-

based applications still dominate the body peer-reviewed literature.  

The high spatial resolution made possible by UAVs means an appropriate flight height can 

be chosen to remove the need for spectral un-mixing for separation of soil effects in 

vegetation pixels, which is important for accurate description of in-field variability in a 

precision farming context Sankaran et al. (2017). This can be seen in the proliferation of the 

use of NDVI in UAV studies without soil adjustment. Table 3 shows some of the most 

commonly reported vegetation indices used in crop health monitoring, with special 

emphasis to indices that make use of visible and near infrared wavelengths which are most 

commonly found on UAV sensors (Yang et al., 2017). 
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Table 3: A summary of the most popular vegetation indices based on R, G, B and NIR in the 

units of remote-sensing reflectance ratio. 

Index Name Main Uses Formula Reference 

Normalized 
Difference 
Vegetation Index 
 

Detection of 
green 
vegetation and 
variability in 
canopy health 
 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Rouse et al. 
(1973) 

Soil  Adjusted 
Vegetation Index 

Detection of 
green 
vegetation 
variability in 
canopy health 
 

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿
∗ (1 + 𝐿) 

 

Huete 
(1988) 

Difference 
Vegetation Index 
 

Detection of 
vegetation 

𝑁𝐼𝑅 − 𝑅 Clevers 
(1986) 

Redness Index Correction of 
soil colour 
effects on 
vegetation 
indices 
 

𝑅 − 𝐺

𝑅 + 𝐺
 

Huete and 
Escadafal 
(1991) 

Ratio Vegetation 
Index 

Detection of 
vegetation 

𝑅

𝑁𝐼𝑅
 

Pearson 
and Miller 
(1972) 
 

Vegetation Index 
Number 

Detection of 
vegetation 

𝑁𝐼𝑅

𝑅
 

Pearson 
and Miller 
(1972) 
 

Excess Green 
Index 

Detection of 
green 
vegetation 

2𝐺 − 𝑅 − 𝐵 Woebbecke 
et al. 
(1995) 

 

2.5.5 Practical Use of Imagery in UAV-based Remote Sensing in Potatoes 

The most widely used vegetation index for green plant segmentation from near-sensing 

images collected with UAVs and digital cameras is the excess green Index. The index was 

first proposed by Woebbecke et al. (1995) utilizing the red, green and blue bands only to 

achieve a near-binary distinction of green colour from soil background in canopy images. 
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The index has been widely used and reported in remote sensing work for enumerating plant 

stands in potatoes (B. Li et al., 2019), wheat (Jin et al., 2017) and rapeseed  (Zhao et al., 

2018). No literature was identified that develops this technique further to produce plant 

density variability maps across the field, rather than just a whole-field aggregated plant 

number. Such a technique would be important in precision farming because such a map can 

be incorporated in variable rate fertilizer and pesticide application regimes to optimize 

management. Li et al. (2019) noticed and reported the general loss of accuracy in potato 

plant stand models developed using green vegetation threshold techniques once the potato 

canopy consolidates. The models are highly sensitive to the stage of crop development. 

Early imaging runs a risk of under-classification of vegetation due to late emerging plants 

while late acquisition may lead to under-estimation of plant numbers due to merged 

canopies where individual plants cannot be separated. 

Additionally, the vegetation indices only take a truecolor or multispectral image as input and 

produce a greyscale image as output. To produce a plant detecting model, traditional image 

analysis is employed to define rules for assigning individual pixels to predetermined classes 

of objects within the image scene. Clustering techniques like Otsu segmentation and 

semantic segmentation have been used to generate binary masks where objects of interest 

(i.e. potato plants) are in the foreground and all other objects are in the background (B. Li et 

al., 2019; Machefer et al., 2020). While approaches like the Otsu segmentation algorithm 

often return satisfactory binary masks, they suffer from a lack of robustness in sub-optimal 

images with non-Gaussian greyscale histograms (Yang et al., 2012).  Subsequent feature 

extraction and regression or classification modelling therefore becomes dependent on the 

non-robust data pre-processing methods deployed to clean the binary mask, which reduces 

the reliability of the models in deployment. 

Recent advances in deep learning approaches for object detection from images offers the 

potential for producing deterministic models for potato plant or stem detection with 

relative robustness to sub-optimal timing of image acquisition or image quality. Machefer et 

al. (2020) used a region-based Convolutional Neural Network (RCNN), specifically the Mask 

R-CNN to produce a model for potato plant detection from UAV imagery with a mean 

average precision on 0.41. The Mask-RCNN is an image classification CNN wrapped with an 

object detection and localization framework. For example, Machefer et al (2020) utilized the 
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ResNet-101 (He et al., 2016), a residual CNN with 101 layers. Detecting the exact location of 

a desired object in a CNN-classified image is achieved by object detection frameworks like 

the Faster R-CNN (Ren et al., 2015) or the “You Only Look Once” (YOLO) framework 

(Redmon et al., 2016). In the case of Mask R-CNN, the Faster R-CNN (FRCNN) is used as the 

object detection framework to produce bounding boxes around a single or multiple desired 

objects of interest in an image (e.g. potato stems), with the addition of a semantic 

segmentation framework to produce accurate masks of the regular or irregular extent of 

each object (He et al., 2017).  

For practical potato stem or plant counting purposes, accurate object enumeration is more 

important than generating pixel-level masks of the extent of each object, therefore the 

FRCNN most likely suffices without the need for semantic segmentation. The FRCNN is a 

unified framework that learns rough regions within an image which are likely to contain 

objects of interest (termed as region proposals), classifies these regions using the backbone 

CNN (e.g. the ResNet-101) then localizes classified object with a bounding box (Ren et al., 

2015). In Machefer et al. (2020), the FRCNN model was shown to have performed 

satisfactorily in counting the number of potato plants from a UAV in slightly merged 

canopies but accuracy was lost once the canopy was completely merged. In a different 

approach, (Dijkstra et al. (2019) developed an object detection framework based on a 

convolutional neural network to count potato plants in merged canopies by tracking the 

centroid pixels of plant clusters, assuming that the leaf architecture of a plant cluster as 

viewed from a UAV permits the learning of vectors pointing to the centroid origin of the 

leaves which is the location of the mother tuber. While this framework shows a lot of 

potential, there is a potential shortcoming in the assumption since potato stems often grow 

independently of their mother tuber and therefore the derived vectors are more likely to 

point to the centroid of stems rather than plants.   

In summary, there appears to be a gap in research on the efficacy of remote sensing data in 

potato yield prediction at the farm level. This is mainly because of the general use of low-

resolution satellite data which makes sub-pixel prediction complicated. Plot-level studies 

like Li et al. (2019) show a great potential for the use of vegetation indices for plant-

population evaluation, however, pertinent research questions remain over the robustness 

of the model, whether plant population prediction can be done at the stem-level within the 
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season and whether an algorithm can be developed to reliably express the plant population 

as a 2D density plot so that spatial autocorrelation can be tested or continuous maps 

developed. It is therefore pertinent to investigate the potential for the development of 

custom vegetation indices for potato stem identification using the spectral properties of 

plants and the potential for leveraging public domain transfer learning models to produce 

robust stem and plant detecting models. These models can in turn be used to predict tuber 

number and size distribution variation across 2D density plots of an entire field’s 

orthomosaic.  

2.6 Geospatial Modelling for Precision Agriculture 

The term precision agriculture is used to describe the optimization of agricultural 

production inputs based on intensive assessment of soil and crop requirements (Nawar et 

al., 2017). Apart from maximization of investment returns through adequate fertilization, 

interest in optimized input management at a spatial scale is driven by deeper understanding 

of the deleterious role of excessive nutrient application on nutrient cycles and downstream 

ecosystems (Rodriguez et al., 2011). Precision agriculture therefore involves the modelling 

of spatial variability across the field using soil, topography, remote sensing data and other 

spatially supported information (Mulla, 2016; Nawar et al., 2017). Within-field spatial 

variation has historically been described and managed using soil analysis as a proxy, 

however, the availability of large volumes of spatial data due to advances in proximal and 

remote sensors and accurate GPS systems has enabled the use of other sources of variation 

for more optimized spatial modelling (Mullar, 2015). Geospatial statistical techniques can be 

used to overlay multiple sources of data on spatial variability and decompose seemingly 

unrelated layers of variables into 2D variability, which can generate homogeneous clusters 

referred to as management zones in precision agriculture (Mulla, 2016; Nawar et al., 2017; 

Perron et al., 2018).  

This section reviews the typical cycle of precision agricultural management comprising of 

the collection and processing of variability data, geospatial overlaying and analysis and the 

spatial modelling involved to enable delineation of management zones. The goal was to 

evaluate the general tools that have been used for modelling spatial information to 

ultimately guide the selection of techniques for interpolating low-intensity point estimates 
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of soil and above-ground variables to produce continuous surfaces for spatially modelling 

TSD. 

2.6.1 Collection of Geospatial Data 

Precision farming starts with the mapping of spatial properties of interest which entails the 

collection of soil data using traditional soil analysis methods and more rapid proximal or 

remote sensing approaches (Nawar et al., 2017). Soil samples are typically collected at an 

intensity of 1 (Mulla, 2015) to 3 (Nawar et al., 2017) samples per hectare for traditional 

nutrient analysis purposes, however, the sampling approach may be altered due to the level 

of spatial variability within the field of interest. The choice of a soil sampling method will 

depend on prior assessment of the nature of soil variability which can be based on historical 

soil and yield maps, subjective visual assessment of soil colour and topographical gradients 

or an exploratory sparse initial sampling (Swyngedouw & Crépin, 2008). An initial conceptual 

model of soil variation can then be developed from which a sampling plan can be drawn. To 

avoid subjectivity, the availability of temporal satellite images at high resolution can help to 

establish objective conceptual models based on variables such as soil brightness. 

Soil sampling strategies are classified into design-based and model-based methods based on 

whether prior assumptions about variation are taken into account or not (Brus & DeGruijter, 

1993). Design-based methods treat within-field variation as a random process without 

assumptions on the gradient of variation, thereby confining variation into a completely 

stochastic realm (Brus & Gruijter, 1993). Typically, sampling strategies under this approach 

will fall under the simple random sampling or stratified simple random sampling 

(Swngedouw & Crepin, 2008). The designed-based approach induces stochasticity through 

the randomization process, therefore the efficiency of the sampling design is confined to the 

procedure used to generate the sampling points, rather than the natural stochasticity at the 

sampling points themselves (Swyngedouw & Crepin, 2008). Any iteration of a sample 

drawing process will draw a unique sample with a unique estimate for making inferences to 

the population (Brus & Gruijter, 1993; Swyngedouw & Crepin, 2008). Brus and Gruijter. 

(1993) give an example of the simple random sampling design as a completely probabilistic 

approach where each sampling location has an equal probability of being drawn based on 

any randomization procedure deployed. 
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In the model-based approach, the probability of a sampling outcome at a given sampling 

location is not fixed by the design process but modelled based on a stochastic but natural 

process (Brus & Guijter, 1993). A continuous probability density is imposed on assumed 

variation across the field therefore the population (i.e. the whole field being sampled) is 

considered as a single realization of the random process, from which a model can be used to 

select optimum sampling locations (Brus & DeGruijter, 1993; Castro-Franco et al., 2015). The 

accuracy of a model-based design therefore largely depends on the chosen model. The 

availability of temporal proximal and remote sensing data like yield maps, soil electrical 

conductivity and vegetation index data enables the creation of a model whose continuous 

distribution can be used for determination of sampling locations (Castro-Franco et al., 

2015). This is typically achieved by overlaying the digital variation maps of all the chosen 

predictors and running classification algorithms to partition the field into homogeneous 

clusters. Castro-Franco et al. (2015) recommend the use of Fuzzy C-Means Clustering (FCMS) 

or a conditioned Latin Hypercube Sampling (cLHS) for sample size determination. FCMS 

analyses and partitions the data space into homogeneous clusters whose centroids 

represent ideal sampling locations which maximize the prediction of the combined 

variation, therefore the sample size is equal to the number of clusters. cLHS imposes a grid 

hypercube with the rows and columns representing the spatial scale of the field while the 

third dimension represents the layers of prior variability maps (Minasny & McBratney, 

2006). cLHS is a stratified random sampling procedure that uses the concept of the Latin 

square to fit sampling points in the data in such a way to satisfy the conditions of a Latin 

hypercube (Castro-Franco et al., 2015). The cLHS and FCMS are the most widely reported 

model-based approaches for geo-location of soil sampling points in geo-statistical work 

(Boettinger et al., 2010; Castro-Franco et al., 2015; de Gruijter et al., 2010; Minasny & 

McBratney, 2006; Roudier et al., 2012). Castro-Franco. (2015) ran FCMS, cLHS and simple 

random sampling on a spatial dataset containing Slope, NDVI and land use as predictors, 

then re-extracted all predictor-data (Slope, NDVI, Land Use) from a the determined sampling 

locations to compare the results. It was found that the cHLS iteration was the most accurate 

at mimicking the original distribution while the other methods slightly over- and under-

sampled some areas in the distribution.  
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Model-based sampling approaches generally use more data to generate sampling locations, 

however, the choice of a design-based or model-based approach will ultimately depend on 

whether model variables can be determined which have predictive value for the response 

that a researcher wishes to detect in their soil analysis. Brus and Gruijter (1993) report 

improvements of sampling efficiency between 0 and 60% when a model-based approach is 

adopted over a design-based approach, adjusting for experimental bias which led to fivefold 

improvements in sampling efficiency using the same data. This shows the importance of the 

underlying model assumptions and statistical analysis procedure in the usefulness of any 

model-based approach. The adoption of any model-based approach for predicting TSD in 

potatoes needs to first focus on the determination of spatial variables that independently 

affect TSD, it therefore requires independent regressions of a compendium of soil and other 

environmental variables to TSD and elimination of nuisance variables, after the most 

pertinent variables are determined, proximal and remote sensing data for estimating these 

variables can be chosen to create a useful model. 

2.6.2 Geospatial Analysis Techniques 

2.6.2.1 Spatial Interpolation 

Variable rate management of inputs largely depends on the establishment of variability 

maps from which fertilizer, herbicides and other inputs demands can be calculated and 

relayed into GPS-controlled applicators (Nawar et al., 2017). spatial interpolation therefore 

plays a critical role in precision farming. The first step to geospatial analysis is making a 

determination whether the data expresses a spatial pattern (Scott, 2015). Descriptive 

statistics can be potentially used as simple evidence of spatial arrangement. For example 

the weighted mean centre, where the mean central coordinate of a variable is determined 

using the values at each coordinate as weights (Scott, 2015), can be used to trace epicentres 

of spatial distribution in the variable. Advanced geostatistical analysis of spatial structure 

however commonly involves the determination of spatial autocorrelation, a measure of the 

relationship between the values of a single variable at two spatial locations (Getis, 2015). 

Haining (2015) describes autocorrelation as positive when closely located points have 

converging values and negative when the opposite occurs, however, a note is made that 

continuously distributed data almost exclusively exhibits positive autocorrelation. The 
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occurrence of autocorrelation is proof that a variable in space is a realization of a spatially 

dependent model with an infinite number of possible realizations (Haining, 2015). The null 

hypothesis for testing for spatial autocorrelation is therefore that the variable follows a 

random process (Scott, 2015). Apart from diffusion or transfer processes, autocorrelation 

may also result from dependence, where one variable inherits the spatial autocorrelation of 

another due to their relationship (Haining, 2015), this can be expected in highly correlated 

variables like ECa and soil nutrients since ECa is partly governed by the cations present in a 

soil (Corwin & Lesch, 2003). Consequently, singular value decomposition of such highly 

correlated variables may be useful to avoid redundancies in data when building variability 

for purposes of management zone delineation in precision agriculture. This also gives a 

strong case for the use of ECa as a singular description of variability in some cations, as long 

as the effect of the cations on ECa can be quantified. Spatial autocorrelation is tested using 

Joint-count test for nominal data (Iyer, 1949) or the Geary’s Contiguity ratio (Geary, 1954) 

and Moran’s correlation coefficient (Moran, 1950) tests for interval data of which the 

Moran test (denoted as I) is most popular (Scott, 2015; Haining, 2015).  

In the interval data methods which are most pertinent to agricultural data, the Geary test 

(Denoted as C) takes a collective summation of the sum of squared differences between 

each spatially referenced datum and all other data. The squared differences are weighted 

with a “zero” if the datum are adjacent to each other or as a “one” if they are far from each 

other (Equation 4). 

 𝐶 = (𝑁 − 1) ∑   
𝑖 ∑ 𝛿𝑖,𝑗(𝑦(𝑖) − 𝑦(𝑗)2/2𝑊(∑ 𝑦(𝑖) − 𝑦)̅̅ ̅2𝑛

𝑖
𝑛
𝑗 … … … … … … … … . . … … . (4) 

Where δ represents the weighting decision based on the distance between i and j, N 

represents the number of data locations, W represents the sum of all δ and  y  ̅is the mean 

of all the data for the variable. 

The Moran test (Equation 5) also takes a collective summation, however instead of the 

squared difference, the deviation of each datum from the variable mean is taken then a 

summation of the cross products of each pair of deviations in the data is calculated. 

𝐼 =
𝑁

𝑊
∑ ∑(

𝑛

𝑗

𝛿𝑖,𝑗(𝑦(𝑖) − �̅�)(𝑦(𝑗) − �̅�)

𝑛

𝑖

)  
∑ (𝑦(𝑖) − �̅�)𝑛

𝑖
2⁄

… … … … … … … … … … . (5) 
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The Geary and Moran tests describe the level of spatial autocorrelation of the whole field of 

study, however, to adequately evaluate the increase or decrease in autocorrelation with 

distance, an iterative process has to be done where any of the two tests are done at an 

increasing distance each then the results plotted as distance against the resultant statistic. 

This is done by replacing the weight variable in the Geary or Moran test with the search 

radius at each iteration (Getis, 2001; Haining, 2015). The resultant graphs from a Moran test 

are called correllograms and those from a Geary test are known as semivariograms (Haining, 

2015). In summary, the global Moran’s I statistic is commonly used and compared to an 

expected value generated from the null hypothesis that the data occurs from a random 

process. A Z-score is used to determine whether the two indices are significantly difference 

from zero, from which an inference can be made about the spatial autocorrelation (Scott, 

2015). If a significant autocorrelation is discovered, interpolation can be done by fitting a 

gaussian process model (e.g. Kriging), otherwise inverse distance weighting is used for data 

without evidence of spatial autocorrelation (Nawar et al., 2017). 

2.6.2.2 Inverse Distance Weighting (IDW) 

IDW is a deterministic interpolation method which assumes a linearly incremental 

dissociation between data points with increasing distance between each other (Nawar et al., 

2017; Singh & Verma, 2019). IDW is the most commonly used interpolation method when 

the number of data points is too low to evaluate spatial autocorrelation (Webster Oliver, 

2007). To estimate the value for a given point using IDW, a neighbourhood or sphere of 

influence is chosen then a weighted average of all data points within the neighbourhood is 

used to determine the missing value (Pramasivam & Venkatramanan, 2019) using Equation 

6. 

𝑓(𝑥, 𝑦) =
∑ 𝑤(𝑑𝑖)𝑧𝑖

𝑁
𝑖=1

∑ 𝑤(𝑑𝑖)
𝑁
𝑖=1

…………………………………………………………………………………………………………(6) 

Where w(d) is the weighting function which can be distance or any other defined function, Z 

is the data value at point i and di is the distance from point i to (x,y). In large datasets, the 

natural neighbour inverse distance interpolation can be used, which triangulates the closest 

points to a missing points for the calculation. However it must be noted that IDW 

interpolation maps can have spikes around data values (Singh & Verma, 2019), to minimize 
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this, a tension spline mathematical function can be applied to the IDW to obtain results that 

approximate natural variation (Wahba, 1991). 

2.6.2.3 Kriging and Covariance Structures 

Kriging follows a similar estimation procedure to IDW, however, apart from deterministic 

distance weighting, kriging incorporates a geostatistical model based on a distribution 

function fitted onto a semivariogram of the data (Mulla, 2016; Singh & Verma, 2019) with 

the assumption of steady covariance across the geographical space (Miller, 2017; Nawar et 

al., 2017). The use of a geostatistical model means that prediction error terms (uncertainty) 

can be calculated (Nawar et al., 2017) which is useful in decision making and gives kriging its 

edge over IDW. To maintain positive parameters for a fitted semivariogram model during 

kriging, a limited number of models are widely accepted of which the most common are 

spherical, exponential, linear and Gaussian models (Mulla, 2016). These models ensure a 

positive “nugget” (y-intercept), Sill (asymptotic y-maxima) and range (Miller, 2017; Mulla, 

2016) from which the strength of the autocorrelation can be evaluated using the partial sill 

(difference between range and nugget) and the nugget to sill ratio (Miller, 2017) as 

illustrated in Figure 12.

 

Figure 12: Schematic diagram of a semivariogram of a soil phosphorus test in ppm (Mulla, 

2015). 
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Modelling agricultural phenomena using the standard variogram models has recently come 

under scrutiny as previous research has shown that agricultural yield processes follow a 

rough autocorrelation structure that decreases at a slower rate than provided for in the 

exponential model (McCullagh & Clifford, 2006; Minasny & McBratney, 2005), a 

consequence of the homogenization of monocropped fields. In this case, the assumptions of 

Gaussian, exponential, spherical or linear variogram models become inappropriate. The 

Matérn covariance function (Stein, 1999) has been proposed and used for modelling 

autocorrelation in agricultural yield components without assuming a theoretical variogram 

(Cho et al., 2021; McCullagh & Clifford, 2006; Minasny & McBratney, 2005). Cho et al. (2021) 

found that kriging with an underlying Matérn covariance structure produced the most 

accurate yield maps in Maize compared to Nearest Neighbour interpolation, Inverse 

Distance Weighting and traditional kriging methods. Kriging is considered a better linear 

unbiased estimator over spatial regression since spatial surface model produced by kriging 

always passes through measured data points because it uses a form of Bayesian inference to 

make a deterministic prediction while at the same time calculating a statistical uncertainty, 

unlike regression models where this is not guaranteed (Miller, 2017; Mulla, 2016). There are 

many kriging techniques, most of which differ in the level of assumption of a stationary 

mean, covariance and resultant residuals (Paramasivam & Venkatramanan, 2019). Simple 

kriging is the most direct kriging method which assumes a stationary mean and covariance 

across the whole field of study, ignoring any potential local deviations in variance and mean 

values within a search window (Miller, 2017), while more complicated co-kriging techniques 

involve incorporation of multivariate data for more efficient prediction, which may be useful 

in precision farming. Ordinary kriging is the most commonly used interpolation method as it 

re-calculates non-stationary local trends in mean and covariance within a kriging search 

window to avoid the generalization of global means on local predictions. However, the need 

for accurate estimation of means at a local level means ordinary kriging needs a high 

sampling intensity within the search window to achieve good accuracy, which impedes its 

adoption (Nawar et al., 2017).   

Most reported spatial interpolation studies for potatoes were conducted at large-scale 

regional level and the potato crop was used as a proxy to understand a secondary 

parameter of interest like the regional spread of potato cyst nematode (Contina et al., 
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2018). The importance of within-field soil variability on yield and TSD has already been 

discussed, however, the prohibitive cost of soil analysis means most farmers still only collect 

1-3 samples per hectare, which does not provide the level of resolution needed to map 

spatial variation in TSD on small farms. Tuber formation processes also operate in a spatio-

temporal dimension which increases uncertainty on predictions based on spatial inferences 

only. This is particularly pertinent to prediction of tuber formation and bulking in potatoes 

as it is affected by the spatial effects of plant density and soil factors as well as the temporal 

effects of photoperiod and radiation intensity (Knowles & Knowles, 2006; O’Brien et al., 

1998). Practical methods for the interpolation of variables that affect tuber formation in 

space and time is therefore important for the further development of precision agriculture 

tools. Where many sources of variation are available for spatial analysis, spatial modelling 

needs to incorporate dimensionality reduction to select the most relevant variables for 

describing the particular independent variable. Prior knowledge plays a critical role. For 

example, prior knowledge of any deterministic effect of stem density on TSD can be 

incorporated into spatial models (Miller, 2017). This helps in the decomposition of 

multivariate data into global trends so that the trend effect can be removed and kriging 

done on the residual to improve the interpolation result.  

Statistical procedures can also be used to de-trend spatial data, in a study aimed at 

producing a regression model for predicting above ground biomass using NDVI in potatoes, 

Heuvelink & van Egmond (2010) fitted a double logistic function on temporal data (days 

between planting and temporal NDVI) to define a general trend in NDVI development 

towards a critical tuber maturation stage. The residuals from this general trend were then 

used to build an experimental variogram which was able to map crop development for 

prediction of a critical vine dessication day when kriged. Heuvelink and Egmond (2010) 

admit that space-time kriging techniques need further research and maturation, however 

for the spatial dimension, the basic concepts of de-trending data and predicting the overall 

effect of production inputs on TSD at harvest still have validity which has not been tested 

and reported yet in literature.  

Geospatial statistics offer the tools necessary for intensive analysis of spatial data to isolate 

and model variation for predicting TSD, however, the performance of the models will 

depend on the strength of the relationship between TSD parameters and available data. 
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Remotely sensed data is widely available at high sampling intensity which may even remove 

a need for geospatial interpolation (Nawar et al., 2017). It is therefore important to review 

and identify remote sensing data that has the highest potential for describing in-field 

variability which has pertinence to tuber yield and size distribution for building predictive 

geospatial models.  

2.7 Literature Review Conclusion 

The literature review has shown that the tuber yield and TSD in any sample of potatoes is a 

realization of a complex model with variables that are related to soil nutrient availability, 

hormonal activity within the plant, competition due to plant population dynamics and solar 

radiation through its effects on photoperiod. All these variables have been shown to vary 

with time, adding a temporal tier to the array of variability that affects TSD. Additionally, 

there is a lot of covariance within the variables, whereby hormonal activity affects apical 

dominance, while being controlled by the changes in photoperiod, and plant nutrition. 

These complex interactions mean experiments on any one variable’s effect on TSD are 

bound to have significant latent spatial and temporal patterns of unexplained variation. A 

wide range of variables have been identified to affect TSD, however, comparison between 

papers is difficult as there seems to be no standardized and universally accepted unit for 

describing it. It is however noted that most studies measure TSD in relation to the 

maximization of yield in a desired grade, though the size range in the chosen grade is 

understandably unstandardized. The most important gap that exists in the literature is a 

standard measure of TSD that can be used to compare results from different studies and can 

be related mechanistically to the variables that are known to TSD.  

Another gap is the general lack of testing of some of the conclusions from controlled 

experiments at a spatial scale in uncontrolled environment. All of the experiments that 

attribute TSD-alteration to differences in edaphic factors rely on the establishment of a 

large range of concentrations, which increase the chances of observing an effect. Whether 

these large variations are observable in the highly homogenized monocropping 

environments to a level that can explain TSD is debatable. It was therefore important to 

generate observations of some edaphic variables in a spatial field survey scenario to 

evaluate whether they contribute to TSD. The Central Research Question of the research 

project is whether it is possible to predict and control TSD by adopting variable 
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management based on in-field variability in soil and crop growth. The following research 

questions have been generated from the literature review: 

1. Defining a unit for TSD: What is the difference in accuracy of TSD models based 

on the Normal and Weibull distributions at predicting yield at a particular finite 

size grade? 

2. Use of ECa for producing high resolution density plots of soil variation nutrients: 

Can ECa be used to create spatial models with edaphic factors as covariates to 

predict tuber yield and size distribution? 

3. Vegetation Indices: Can vegetation indices and satellite image time series be 

combined with other covariates to predict yield and/or biomass accumulation? 

4.  Plant Density Algorithms: Can the principles of meristematic light interactions 

established by Gates et al., (1965) be used to develop a vegetation index to 

enumerate the number of stems and number of plants in a potato field at full 

canopy? 
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CHAPTER 3 – Relationships between Soil Variability and Tuber Size Distribution 

3.1 Comparison of Potato Tuber Size Distribution Fitting Methods and Evaluation of the 

Relationship between Soil Properties and Estimated Distribution Parameters  

 

Abstract 

Accurate estimation of tuber size distribution (TSD) parameters in discretely categorized 

potato (Solanum tuberosum L) yield samples is desired for estimating modal tuber sizes that 

are fundamental to yield prediction. In the current work, systematic yield digs were 

conducted on five commercial fields (N=119) to compare the Weibull, Gamma and Gaussian 

distribution functions for relative-likelihood-based goodness-of-fit to the observed discrete 

distributions. Parameters were estimated using maximum likelihood estimation (MLE) for the 

three distributions but were also derived using the percentiles approach for the Weibull 

distribution to compare the accuracy of this closed-form approach to MLE. The relationship 

between TSD and soil nutrient variability was examined using the best-fitting model’s 

parameters. The percentiles approach had lower overall relative likelihood than the MLE 

approaches across five locations, but had consistently lower Root Mean Square Error in the 

marketable tuber size range. Negative relationships were observed between the percentile 

approach’s shape parameter and the concentrations of phosphorus and nitrogen, with 

significant (P<0.05) regression coefficients for P (-0.74±0.33 for distribution of proportional 

tuber numbers and -1.3±0.62 for tuber weights). Stem density was negatively associated with 

the scale and mode of the tuber number (regression coefficients -0.98±0.63 and -1.08±0.78 

respectively) and tuber weight (regression coefficients -0.99±0.78 and -1.04±0.69 

respectively) distributions. Phosphorus negatively related to the scale of the tuber number 

based distribution while positively associating with the tuber weight distribution. The results 

suggest that excess P application was associated with the increase in small tubers that did not 

contribute significant weight to the final yield. 
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3.1.1 Introduction 

Potato (Solanum tuberosum L.) production is a high input, high output operation driven by 

well-developed, technologically advanced markets which depend on the consistent supply 

of high-quality potato raw materials. Nevertheless, high output does not necessarily 

translate into high returns for growers due to the selectivity of processing factories for tuber 

size grades (Machakaire et al., 2016). This occurs especially in the pre-fried potato 

processing sector which accounts for 62% of the global processed potato market (Keijbets, 

2008). Agronomic techniques for optimizing tuber size distribution (TSD) are therefore an 

important consideration for potato growers and researchers. 

Several methods of quantifying potato TSD have been proposed in the literature. 

Travis (1987) described TSD using the spread of tuber sizes around the modal grade 

assuming a Gaussian distribution, allowing the determination of a coefficient of variation 

(CV) as an index for TSD. Ideally, farmers can use this to conduct mid-season TSD 

assessments, which can then support management decisions on vine desiccation timing. 

Struik et al. (1990) and others subsequently supported the Travis (1987) method. However, 

the probability densities plotted by Struik et al. (1991) revealed that the TSD by weight 

skews to the right and the Gaussian distribution may not necessarily capture the spread of 

the data.  

Several alternatives have been suggested like the Weibull (Bussan et al., 2007; 

Nemecek et al., 1996) Log-normal (Marshall et al., 1993) and the Gamma (Aliche et al., 

2019) functions. Whilst these alternative functions fit TSD more accurately, their parameters 

are often determined using maximum likelihood estimation, which makes it non-ideal for 

quick field assessments by non-statisticians. A Gaussian distribution is therefore often 

assumed due to the simplicity of determining its parameters (i.e. mean and standard 

deviation) from yield digs. Currently, TSD is mostly evaluated using the percentage of 

marketable tuber weight in the total tuber yield. 

A positive association between soil nitrogen concentration and TSD has been 

consistently reported by several authors over the past 5 decades, mostly when TSD is 

measured as the proportion or absolute quantity of yield above a weight or transversal 

diameter threshold (Arsenault et al., 2001; Gao et al., 2018; Porter & Sisson, 1991; 

Schippers, 1968b). The overall effect of N on the shape, location and scale of the TSD has 
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not been consistently demonstrated partly due to the lack of standardized and generally 

accepted parameters for measurement (Wurr et al., 1993).  

Potato growers, and subsequently researchers, target different tuber sizes at harvest 

depending on localized outlet market demands (Taylor et al., 2018; Wurr et al., 1993), 

making it difficult to standardize the size classes and objectively compare TSD from different 

studies. The influence of potassium fertilization on potato yield and TSD is also widely 

studied (Allison et al., 2001; Birch et al., 1967; Dickins et al., 1962) and soil K replacement 

based on crop removal is generally accepted as a management strategy in commercial 

production systems. For phosphorus, Rosen & Bierman (2008) found that incremental rates 

between 0 and 74 kg/ha did not affect the percentage of marketable (>85 g) Russet Burbank 

yield in loamy sand soil with medium to high P concentrations (25 to 33 mg/kg Bray P1). This 

was attributed to an increase in the number of small tubers happening concurrently with a 

reduction in the percentage of large tubers as P rate increased. Quoting Westermann and 

Kleinkopf (1985), Rosen and Bierman (2008) attribute this response to a shift in dry matter 

partitioning from tubers to vegetative growth as leaf P increased. The response of TSD to P 

can be affected by P interactions with other elements in the soil.   

Phosphorus is known to exhibit antagonistic relationships with zinc (Zn) and 

magnesium (Mg) under alkaline conditions and iron (Fe) and aluminium (Al) under strongly 

acidic conditions (Rietra et al., 2017). These four elements precipitate P out of the soil 

solution and render it unavailable for plant uptake, hence confounding the effect of P 

fertilization on agronomic parameters. The influence of Mg is worth consideration because 

it is often applied in potato fields as Epsom salt to control Mg-deficiency-related leaf 

chlorosis. Finally, the role of the Sulphate counter ion in MgSO4 salts and K2SO4, as well as 

the inherent soil variability in sulphur is rarely studied and is an often discounted subject of 

speculation (Simmons & Kelling, 1987).  However, Caldiz et al. (2018) found that 61% of the 

variation in the proportion of small tubers (<50 mm) was explained by the variation in soil S 

content (P<0.05). Increase in S concentration in the soil had a positive correlation with the 

percentage of small tubers in the final yield. Within-field variation in S may ultimately be 

correlated to variation in TSD and evidence from Caldiz et al. (2018) supports the hypothesis 

of an increase in small-sized tubers observed in K2SO4 applications by Henderson (1965). 

The objective of the current study was to compare Gaussian, Gamma and Weibull 

distributions for fitting potato TSD and evaluate their predictive performance. For the 
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Weibull distribution, the current study particularly deployed a direct estimation of the scale 

and shape parameter from the cumulative distribution function using probabilities of 

different tuber size grades from sample yield digs, which has not been reported in previous 

studies. Additionally, the study considered various soil nutrients for their relationships to 

TSD in a multivariable regression environment, selecting plausible models based on 

theoretical considerations and conditional information criteria. 

3.1.2 Methodology 

3.1.2.1 Site Characterisation  

The study was conducted at four sites as summarized in Table 4. Deaton 6 and HF7 sites 

were located in the East of England (Lincolnshire) on reclaimed marsh land with a shallow 

water table and high organic matter content. There was variation in soil physical and 

chemical properties across the field due to the presence of Roddons, historical features in 

drained marshland soils where silty clay soils follow the course of historical streams and 

waterways. Horse Foxhole and Buttery Hill were located in the West of England (Shropshire) 

on well-drained slightly stony, sandy loam soil subtended by weathered sandstone with low 

variation in soil nutrients across the field. Additional tuber sampling for TSD modelling 

(without soil analysis) was conducted at Crabtree Leasow, also located in the West of 

England with similar soil and weather conditions to Buttery Hill and Horse Foxhole. Planting 

and field management was carried out by the respective farmer at each field. Consequently, 

land preparation was conducted similarly in all fields by ploughing at 30 cm depth followed 

by bed-forming at 90 cm between rows and destoning. Fertilizer was applied uniformly by 

broadcasting macro and micronutrients based on soil analysis as summarized in Table 4. 

Deaton 6 and HF7 were irrigated by drip irrigation while a hose reel irrigator was used at 

Horse Foxhole and Buttery Hill. All management practices were conducted uniformly across 

the field throughout the growing period. 
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Table 4:  Summarized information of the study sites 

Field 

Name 

Year Coordinates Variety N1 Fertilizer Nutrient Rate 

(kg/ha) 

HF7 2020 53°12'40.71"N Maris Piper 30 Nitrogen 107 

    0°24'49.76"W    Phosphorus 94 

        Potassium 290 

B.Hill2 2020 52°46'22.05"N Amora 30 Nitrogen 173 

   2°25'40.46"W    Potassium 94 

Deaton 6 2019 53°12'20.97"N Maris Piper 12 Nitrogen 100 

    0°21'55.06"W    Phosphorus 150 

        Potassium 307 

C.Leasow3 2020 52°46'15.21"N P.Dell4 18 Nitrogen 167 

   2°21'37.57"W   Potassium 89 

H.Fxhole5 2019 52°46'26.94"N Amora 29 Nitrogen 125 

    2°25'49.38"W    Phosphorus 140 

        Potassium 238 

        Magnesium 40 

        Sulphur 75 

1 = Number of samples collected. 2 = Buttery Hill. 3 = Crabtree Leasow. 4 = Pentland Dell. 

45= Horse Foxhole. 

3.1.2.2 Sampling Design 

A field survey was designed at each of the five fields using a model-based sampling 

approach to determine representative soil sampling locations that captured the variability in 

the field. The number of samples collected at all locations are as provided in Table 4. Soil 

sampling was done at all sites except Crabtree Leasow, which was hence not included in the 

soil analysis. The soil samples were collected at Buttery Hill (N=23), HF7 (N=24), Deaton 6 

(N=12) and Horse Foxhole (N=23). Soil macronutrient quantities are known to correlate with 

organic matter content (Y. Yang et al., 2011), which in turn influences soil colour (Costa et 

al., 2020). The Soil Brightness Index (SBI) as described by Mponela et al. (2020), was chosen 

as a substitute for spatially modelling the soil colour differences at each field and generating 
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strata for a stratified random sampling design (equation 7). At each field, the SBI was 

calculated at least one day per month for three months prior to crop emergence and then 

the average SBI was calculated. The SBI at each site was calculated using atmospherically 

corrected (Level-2A) satellite imagery of 10 m resolution acquired by the Sentinel-2 satellite, 

on manually inspected cloud-free days. Each field was delineated into 3 clusters by k-means 

clustering (k=3) based on SBI to generate zones of relative homogeneity which formed the 

sampling strata. A sampling unit of 6 m by 6 m (36m2) was chosen to cover the accuracy 

specification of the GarminTM eTrex 20 GPS receiver that was used for soil sampling. A grid 

of 36m2 quadrats was imposed across a rasterized SBI surface then random quadrats were 

drawn from each stratum. A mapped example of the SBI-model-based sampling is provided 

in appendix A. The equation for SBI was:  

𝑆𝐵𝐼 =  (
𝑅2 + 𝐺2 + 𝐵2

3
)

0.5

… … … … … … … … … … … … … … … … … … … … … … … … … … (7) 

Where R, G and B where the pixel-level remote sensing reflectance values of B04, B03 

and B02 bands of the Sentinel-2 satellite reflectance data, respectively. 

Power analysis to determine sample size for the survey was calculated to resolve SBI 

variability with a statistical power of 0.8 as recommended by Cohen (1988). The effect size 

was estimated based on the expected within-field contrast between the k-means cluster 

with the lowest SBI value (dark soil) and the one with the highest SBI value (bright soil) in 

the sample. The effect size was therefore calculated as the difference between the mean SBI 

of dark soils and the combined mean of the medium and light clusters divided by the 

standard deviation of the entire dataset. R v4.0.2  (R Core Team, 2019) was used to calculate 

the sample size using the “pwr.t.test” function from the “pwr” package (Champely et al., 

2018). Once the sample size of each cluster was determined, sampling locations were 

selected by randomly selecting quadrats from the grid imposed on the SBI raster. The 

quadrats were georeferenced and assigned with unique identifier codes then exported as a 

GPx file into the GPS receiver for tracking during soil and yield sampling. All raster analysis 

steps were performed using ArcGIS (ESRI, 2020). 
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3.1.2.3 Soil and Nutrient Analysis 

Soil sampling was conducted before planting, but after fertilizer incorporation. Soils were 

sampled using a 30 cm auger. Samples were collected in triplicate from each quadrat and 

mixed to form a composite sample. The soil samples were then air dried at 30C for 72 

hours. After air drying, the soils were ground and sieved (< 2 mm) prior to analysis.  The 

percentages of sand, silt and clay in each soil sample were determined using the 

sedimentation method (Jackson et al., 1986). Hydrogen peroxide was used to oxidize 

organic matter, after which the particle size distribution was determined through sieving 

and sedimentation. 

Soil samples were analysed for N, C and S using the Dumas method (Kirsten & 

Hesselius, 1983). Air dried soil (0.25 g for N and 0.15 g for C and S) was passed through a 

furnace at 1000C in the presence of oxygen. The oxidized gases were then detected and 

measured using a thermal conductivity cell. The Olsen method (Page, 1982) was used to 

estimate available P in the soil. Sodium bicarbonate was used to extract P from the soil into 

solution and form phosphomolybdate after reaction with ammonium molybdate. The 

phosphomolybdate was reduced by ascorbic acid to form a blue complex whose 

concentration was measured spectrophotometrically at 880 nm. Concentrations of K and 

Mg were determined by flame photometry using ammonium nitrate as an extractant as 

described in (Jackson et al., 1986). 

3.1.2.4 Yield Data Collection 

At every sampling location, the number of plants within a one metre row was counted and 

recorded as a measure of plant density. At harvest, all the plants in the one metre length 

were carefully uprooted with a spade and the number of main stems was counted as a 

measure of stem density. Excavation was carried out carefully to minimise any loss of 

tubers. All tubers were separated from their stolon and stored for further processing. 

The number of tubers at each sampling point was counted. At all locations except for 

Horse Foxhole, all tubers with a transversal diameter greater than or equal to 25 mm were 

graded using potato sizing squares into 10 mm size grades up to 65 mm, with all tubers over 
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65 mm in diameter placed in one bin. All tubers under 25 mm diameter were binned into 

one grade. After grading, the tuber number in each category was counted and its weight 

was determined at 0.01 g accuracy. For Horse Foxhole, the tubers were separated into 

typical commercial grading of 0-25 mm, 25 mm-45 mm, 45-65 mm and greater than 65 mm. 

3.1.2.5 Data Analysis 

Tuber Size Distribution was modelled using the Gaussian (Aliche et al., 2019; Travis et al., 

1987), Gamma (Aliche et al., 2019) and Weibull (Bussan et al., 2007, Nemececk et al., 1996) 

distributions. The Gaussian distribution is the most widely adopted of the three 

distributions, with the mode equalling the mean of the distribution and its parameter 

estimation is simple and intuitive  as described in Travis et al. (1987). For the Gamma 

distribution, the probability density is as described in Aliche et al. (2019), with respect to 

TSD in potatoes. The Weibull distribution’s density function was described by Nemececk et 

al. (1996). The Gamma and Weibull distribution are considered flexible to oft-observed 

right-skewed potato TSD (Bussan et al., 2007; Nemececk et al., 1996; Aliche et al., 2019), 

hence they can potentially give better estimates of the modal tuber size than the Gaussian 

distribution. Love & Thompson-Johns (1999) also demonstrated that agronomic practices 

such as wider plant spacing can also lead to left-skewed TSD, making the Weibull 

distribution an ideal candidate for modelling the shape of the distribution flexibly. Figure 13 

illustrates the effect of changing the shape parameter on a conceptual Weibull probability 

density curve. Generally, the distribution resolves to an approximately symmetrical 

distribution with a shape values of 3.6 and approaches right-skewness or left-skewness 

above or below that respectively (Lai et al., 2006). This makes the Weibull distribution more 

appropriate for its flexibility to model both left and right skewed data. 
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Figure 13:  The effect of changing the shape parameter on a conceptual Weibull probability 

density curve 

Maximum likelihood estimation approach was used to obtain estimates for the mean and 

standard deviation of the Gaussian distribution, and the scale and shape parameters for the 

Weibull and Gamma distributions. The “fitdstrplus” package (Delignette-Muller & Dutang, 

2015) was used to obtain the parameter estimations for all three distributions from the 

right-censored interval potato TSD data of the current study. Accordingly, the likelihood of 

each parameter θ in each distribution was fitted as follows: 

𝐿(𝜃) = ∏ 𝐹(𝑥𝑗
𝑢𝑝𝑝𝑒𝑟|𝜃)

𝑁𝑙𝑒𝑓𝑡𝐶

𝑗=1
× ∏ 1 − 𝐹(𝑥𝑘

𝑙𝑜𝑤𝑒𝑟|𝜃)
𝑁𝑟𝑖𝑔ℎ𝑡𝐶

𝑘=1 × ∏ (𝐹(𝑥𝑚
𝑢𝑝𝑝𝑒𝑟|𝜃) −

𝑁𝑖𝑛𝑡𝐶
𝑚=1

𝐹(𝑥𝑗
𝑙𝑜𝑤𝑒𝑟|𝜃)) ……………………………………………………………………………………………..……………… (7) 

Using the cumulative distributions (F), where xj
upper represented the upper values defining 

the NleftC left-censored observations, xk
lower represented the lower values defining the NrightC 

right-censored observations, xm
lower and xm

upper represented the intervals defining the NintC 

interval-censored observations (Delignette-Muller & Dutang, 2015). 
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The Weibull distribution parameters were also estimated using the percentiles method 

(Dubey, 1967). Accordingly, the shape parameter (βweibull ) of the Weibull distribution was 

estimated by linearizing the cumulative distribution function at two different discrete 

diameters (e.g. 45 mm and 65 mm) then combining the two equations to solve for βweibull as 

follows: 

�̂�𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = (ln 𝑥𝑖 − ln 𝑥𝑗)
−1

× { ln [
ln(1−𝑓(𝑥𝑗))

ln(1−𝑓(𝑥𝑖))
] } ………………………………………………………..…(8) 

The scale parameter ∝̂𝑊𝑒𝑖𝑏𝑢𝑙𝑙 was then calculated using �̂�𝑊𝑒𝑖𝑏𝑢𝑙𝑙 and the cumulative 

density at one known quantile as follows: 

∝̂𝑊𝑒𝑖𝑏𝑢𝑙𝑙=
𝑥𝑖

[− ln(1−𝑓(𝑥𝑖))]

1

�̂�𝑊𝑒𝑖𝑏𝑢𝑙𝑙

……………………………………………………..…………..(9) 

Where f(xi..j) represented the cumulative probability of tuber number or weight at xi 

or xj tuber diameter and xi...j where the chosen ith or jth discrete diameter of a tuber 

In each sample, the estimated parameters of the four distribution-fitting approaches 

(Gaussian, Gamma, Weibull with MLE and Weibull with percentiles approach) were used to 

predict the tuber numbers in each original discrete size grade, creating fully-specified 

ordered discrete distributions. The Weibull percentiles approach was fitted at the 

percentiles corresponding to 45 mm and 65 mm tuber sizes, selected because this 

represents the marketable range for main crop potatoes. In this case, the percentiles were 

the cumulative proportions of the tuber number or weight at 45 mm or 65 mm, and were 

therefore different for every sample. The logarithm of the relative likelihood (hereinafter 

referred to as log relative likelihood) of the predicted discrete distribution (relative to the 

actual discrete distribution) was then calculated as illustrated in Lindsey (1974). The 

likelihood of the discrete distribution was calculated as the likelihood of a fully specified 

multinomial distribution follows: 

𝐿(𝑃) =  ∏ 𝑃𝑗
𝑛𝑗

𝑗  ……………………………………………………………………………………………………….. (10) 

Where P is the probability of the jth category and n is the frequency of the jth category. 
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The log relative likelihood was then used as a ranking index of the plausibility of the models, 

with the most plausible model having the highest likelihood. The log relative likelihood was 

calculated as follows: 

𝐿𝑅𝑅 =  ∑ 𝑛𝑗 [ln(Ĺ𝐽) −  ln(𝐿𝑗)] ……………………………………………………………..………………….(11) 

Where nj is the observed frequency of a category, Ĺj is the probability of the predicted 

distribution and Lj is the likelihood of the observed distribution. 

Uncertainty in the log relative likelihood was assessed using 95% confidence intervals. 

Fisher’s information was used to estimate the variability of the estimate. The Fisher’s 

information was derived by negating the expected value of the second derivative of the log 

likelihood equation (Ly et al., 2017), which for the multinomial distribution used was defined 

as follows: 

𝐼(𝜃) =  −𝐸 (−
𝑛

𝑃𝑖
2) ……………………………………………………………………………………..……………. (12) 

Where n is the frequency of a category and Pi is the likelihood of the category. The 

reciprocal of the square of the fisher’s information was used as the standard error 

component of the confidence interval formula.  

The main purpose of fitting the theoretical continuous distributions to the discretely 

measured tuber size fractions is to maximize the accuracy of the estimate of the modal 

tuber size of the distribution, which is the marketable component of the production. This 

falls within the 45 mm to 65 mm size bands. Therefore, the most suitable distribution was 

considered to be the one that maximized the likelihood of this tuber size fraction. The log 

relative likelihood estimates of the 45 mm to 65 mm size band were therefore also 

compared for the four models. Additionally, the Root Mean Square Error (RMSE) of 

prediction for the frequencies of the 45 mm to 65 mm size fraction were compared. The 

RMSE was calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 −  ý𝑖)2𝑛

𝑖=1  ……………………………………………………………………………....… (13) 
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Where N is the number of observations, yi is the predicted value and ýi is the observed 

value. The modal tuber size of the most plausible model within the 45 to 65 mm size 

fraction was considered to be the best estimate of the distribution’s model. For comparison 

purposes, the most plausible distribution fitted using the benchmark maximum likelihood 

approach was used to compare the modal tuber size predictions of the other models using 

RMSE. The mode of the Gaussian distribution was considered to equal the mean. For the 

Gamma and Weibull distributions, the modes were calculated as follows: 

𝑀𝑜𝑑𝑒𝐺𝑎𝑚𝑚𝑎 =  𝛾𝐺𝑎𝑚𝑚𝑎 × (�̂�𝐺𝑎𝑚𝑚𝑎 − 1) …………………………………………….………………….. (14) 

𝑀𝑜𝑑𝑒𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = ∝̂𝑊𝑒𝑖𝑏𝑢𝑙𝑙× (1 −  
1

�̂�𝑊𝑒𝑖𝑏𝑢𝑙𝑙
)

1

�̂�𝑊𝑒𝑖𝑏𝑢𝑙𝑙  ……………………………………………..………… (15) 

Where Gamma is the scale parameter of the Gamma distribution, Gamma is the shape 

parameter of the Gamma distribution, ∝̂𝑊𝑒𝑖𝑏𝑢𝑙𝑙 is the scale of the Weibull distribution and 

�̂�𝑊𝑒𝑖𝑏𝑢𝑙𝑙 is the shape parameter of the Weibull distribution.  

To assess the significance of the responses of TSD to soil nutrients, mixed effect regression 

models were computed for the primary macronutrients. The outcome variables of the linear 

models were the shape and scale parameters of the best-fitting models, treated as new 

observations, with all estimates receiving the same weight in any further data analysis. The 

study locations were used as the source of random variation. Cognisant of the spatial non-

independence of the observations within each location, the mixed effect models included a 

Matern covariance structure to account for spatial autocorrelation (Minasny & McBratney, 

2005; Stein, 1999).  The Matern covariance was fitted by restricted maximum likelihood. 

Statistical analysis was conducted in R v4.0.2 (R Core Team, 2019) and the spatial regression 

model was fitted using the SpaMM package (Rousset & Ferdy, 2014). Statistical significance 

was evaluated using confidence intervals and the goodness of fit for multivariable 

regressions was evaluated using the nRMSE, which was computed by dividing the RMSE by 

the mean of the observed variable. 
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3.1.3 Results 

3.1.3.1 Summary Statistics 

Summary statistics for the soil and plant variables measured in the study are presented in 

Table 5. Soil texture ranged from predominantly sandy silt loams at HF7, through sandy 

loams at Buttery Hill and Horse Foxhole to predominantly Silty Clays at Deaton 6.  

 

Table 5: Summary statistics of key soil and plant variables measured at each study site 

Soil.Prop1 Deaton 6 HF7 Buttery Hill Horse Foxhole 
 

Mean (CV2) Mean (CV) Mean (CV) Mean (CV) 

Clay (%) 38.5 (0.19) 18.3 (0.58) 9.3 (0.15) 14.3 (0.29) 

Silt (%) 55.4 (0.12) 38.1 (0.20) 24.6 (0.21) 17.4 (0.30) 

Sand (%) 6.1 (0.31) 43.5 (0.30) 66.1 (0.09) 68.3 (0.10) 

N (g/kg) 9.4 (0.29) 8.4 (0.45) 1.3 (0.12) 1.7 (0.14) 

C (g/kg) 124.2 (0.36) 101.8 (0.46) 12.9 (0.12) 16.3 (0.09) 

S (g/kg) 3.3 (0.47) 2.2 (0.51) 0.3 (0.12) 0.3 (0.19) 

P (mg/kg) 41.2 (0.15) 42.4 (0.17) 100.0 (0.13) 91.1 (0.12) 

pH 7.5 (0.08) 6.6 (0.05) 7 (0.03) 6.6 (0.03) 

K (mg/kg) 291.3 (0.27) 272.7 (0.24) 276.8 (0.18) 202.4 (0.19) 

Mg (mg/kg) 185.0 (0.29) 80.1 (0.25) 87.4 (0.12) 88.4 (0.14) 

Plants/ m2 2.5 (0.12) 2.5 (0.24) 2.8 (0.26) 5.2 (0.30) 

Stems/m2 9.8 (0.17) 12.4 (0.34) 13.9 (0.28) 17.0 (0.16) 

Tubers/m2 38.7 (0.10) 41.1 (0.28) 35.4 (0.29) 48.3 (0.14) 

Yield (kg/m2) 4.2 (0.12) 5.2 (0.19) 3.4 (0.27) 5.5 (0.11) 

1 = Soil Property. 2 = Coefficient of variation.  

Mean total C was highest at Deaton 6 (124.15 g/kg) and HF7 (101.77 g/kg), a reflection of 

the high organic matter content, while the carbon content of Buttery Hill, and Horse Foxhole 

were lower. Deaton 6 and HF7 soils also contained higher concentrations of N and S but had 

lower concentrations of P than the sandy loams. Plant spacing was consistent at 

approximately 2.5 plants/m2 across locations except Horse Foxhole where inconsistent 
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planting spacing led to an average of 5 plants/m2. Horse Foxhole also recorded the highest 

number of stems, tubers and yield per square metre.  

 

Table 6 shows the summary statistics of the TSD parameters at the five study sites where 

the TSD modelling was conducted. Parameter Mu, which was the tuber size with the largest 

probability (modal tuber size with respect to the probability densities of tuber number as 

determined using the best-fitting TSD model) ranged from 37 mm at Buttery Hill to 51 mm 

at Horse Foxhole. The same pattern was also reflected in the Mu with respect to tuber 

weight (49 mm at Buttery Hill and 61 mm at Horse Foxhole). Similarly, the scale of the tuber 

size distribution with respect to tuber numbers, ranged from 41 mm at Buttery Hill to 56 

mm at Horse Foxhole and with respect to tuber weight, the scale was largest at Horse 

Foxhole (62.44 mm) and lowest at Buttery Hill (50.42 mm). This large variation between 

fields was not replicated within field with CVs for the distribution scale ranging from 0.07 at 

Buttery hill to 0.03 or less at Horse Foxhole for both tuber size and weight. Within-field 

variation in TSD with respect to tuber number was higher when quantified as the shape of 

the distribution.  

The average shape of Weibull curves fitted on within-field TSD with respect to size ranged 

from 3.36 at Buttery Hill to 5.04 at Deaton 6. With respect to weight, higher shape values 

were observed, with the minimum at Buttery Hill (6.46) and maximum at HF7 (8.52). The 

higher shape values suggested that TSD with respect to tuber weight was more left skewed 

than with respect to tuber number. Overall, more within-field variability was captured in the 

shape parameter than scale parameter. The CV ranged from 0.12 at Deaton 6 and Horse 

Foxhole to 0.23 at Buttery Hill with respect to tuber number and up to 0.27 at Buttery hill 

with respect to tuber weight. The CV of the scale parameter was consistently under 0.1 for 

both tuber number and weight, suggesting low variability in the modal tuber size or weight 

class despite large variability in the shape of the tail that influence the shape parameter. 
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Table 6: summary statistics of the tuber size distribution (TSD) parameters at five different 

sites 

1= Coefficient of variation. 2 = modal tuber size with respect to proportional tuber weight. 3 

= modal tuber size with respect to proportional tuber weight. 4:5 = Weibull or scale shape of 

proportional tuber numbers. 6:7 = Weibull shape or scale parameter of proportional tuber 

weight 

 

3.1.3.2 Comparison of TSD functions 

Figure 14 shows the distribution functions fitted to the average proportional tuber weights 

at each location. The visual variations in the distributions’ locations of central tendency 

were apparent. The Gaussian and Gamma distributions predicted relatively lower 

probability densities at the modal tuber size than the two Weibull distribution. As illustrated 

through the example in Figure 14, the Weibull distributions tended to predict higher 

probability densities  between 50 mm and 60 mm but the probability density quickly fell off 

towards the right tail, predicting low tuber yield in the oversized tuber size fractions (>65 

mm). The Gaussian and Gamma distributions maintain a gentle descent of probability 

densities towards the right tail and predict higher yields in the oversized fractions.  

Parameter Deaton 6 HF7 B.Hill H.Foxhole C.Leasow 

Mean (CV1) Mean (CV) Mean (CV) Mean (CV) Mean (CV) 

Mu2 (mm) 49.46 (0.03) 44.50 (0.07) 36.50 (0.08) 51.10 (0.03) 43.70 (0.05) 

Muwt
3 (mm) 56.71 (0.05) 53.57 (0.06) 48.45 (0.07) 61.09 (0.03) 49.49 (0.05) 

W.Shape4 5.0 (0.12) 4.5 (0.16) 3.4 (0.23) 4.7 (0.12) 5.15 (0.28) 

W.Scale5 51.8 (0.03) 48.8 (0.07) 40.6 (0.07) 55.8 (0.03) 45.93 (0.06) 

W.Shapewt
6 7.59 (0.20) 8.52 (0.26) 6.46 (0.27) 7.38 (0.14) 7.09 (0.12) 

W.Scalewt
7 57.88 (0.04) 54.35 (0.07) 50.42 (0.07) 62.44 (0.02) 50.53 (0.08) 
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Figure 14: The Gaussian, Gamma and Weibull distribution functions fitted to the average 

proportional tuber weights at HF7 (A), Buttery Hill (B), Crabtree Leasow (C), Deaton 6 (D) and 

Horse Foxhole (E) . 

Figure 15 shows the distribution functions fitted to the proportional tuber numbers at all 5 

locations. As illustrated, all the distributions estimated the modal tuber size accurately, 

including in the right-skewed Buttery Hill crop. The Gamma distribution tended to under-

estimate the TSD relative to the other three fitting-methods.  
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Figure 15: The Gaussian, Gamma and Weibull distribution functions fitted to the average 

proportional tuber numbers at HF7 (A), Buttery Hill (B), Crabtree Leasow (C), Deaton 6 (D) 

and Horse Foxhole (E) 

Apart from the right-skew at Buttery Hill, the TSD with respect to tuber number was roughly 

symmetric and the difference between the Gaussian and the two Weibull methods was not 

readily discernible, visually. As shown in Table 6, the Weibull shape at Crabtree Leasow, 

Buttery Hill, Horse Foxhole and Deaton 6 ranged from 4.7 to 5.0, suggesting left-skewed 

distribution. 

Table 7 shows the log relative likelihood estimates of the overall distributions of the four 

tested models, relative to the overall distribution of the observed tuber numbers and tuber 
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weights in each size fraction.  The confidence intervals of the estimates are also shown. 

With respect to tuber number, the Gaussian distribution was found to be the most plausible 

model at one out of the five locations (Crabtree Leasow) while the Weibull distribution was 

the most plausible at Branston Booths, Buttery Hill and Deaton 6. The Weibull distribution 

with percentiles approach to parameter estimation was found to be most plausible at Horse 

Foxhole, where the tubers were sized in commercially-practiced main crop size fractions. 

The log relative likelihood estimates of all the distributions at all locations were significantly 

different such that their confidence intervals did not overlap has shown in Table 7.  

 

Table 7: Average log relative likelihood estimate and confidence intervals of fitted Gaussian, 

Weibull, Gamma and Weibull Percentiles curves to potato tuber size distributions at five, 

relative to the likelihood of the observed discrete distribution 

 Distr.1 HF7 B.Hill2 C.Leasow3 Deaton 6 H. Foxhole4 

Tuber Number 

Gaussian -3.10±0.03 -3.02±0.02 -2.15±0.03 -4.52±-0.03 -2.31±-0.01 

W.MLE5 -2.75±0.03 -2.95±0.02 -2.83±0.02 -3.73±0.02 -1.53±0.02 

Gamma -5.27±0.03 -3.47±0.03 -2.74±0.03 -8.71±0.02 -2.48±0.01 

W.Perc6 -3.68±0.03 -3.86±0.03 -2.42±0.04 -5.38±0.01 -0.03±0.01 

Tuber weight 

Gaussian -345.31±0.01 -272.14±0.04 -160.71±0.01 -249.75±0.01 -3.87±0.01 

W.MLE -197.33±0.01 -196.74±0.04 -110.32±0.03 -222.35±0.02 -2.70±0.01 

Gamma -538.54±0.01 -398.75±0.01 -247.98±0.01 -431.97±0.02 -4.79±0.03 

W.Perc -392.47±0.01 -322.85±0.03 -272.79±0.02 -309.53±0.02 -0.33±0.01 

1= Distribution. 2 = Buttery Hill. 3 = Crabtree Leasow. 4 = Horse Foxhole. 5 = Weibull 

distribution with parameters estimated by maximum likelihood estimation. 6 = Weibull 

distribution with parameters estimated by the percentiles approach 
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With respect to tuber weight, the Weibull distribution with maximum likelihood estimation 

was the most plausible model at Branston Booths, Buttery Hill, Crabtree Leasow and Deaton 

6, with the highest relative likelihood to the observed discrete distribution as shown in Table 

7. Similar to the distributions of the tuber numbers, the Weibull distribution with percentile-

based parameter estimation was the most plausible model at Horse Foxhole with no 

overlapping confidence intervals at all five locations. Overall, the Gamma distribution was 

found to be the least plausible of the four tested models with respect to both tuber number 

and weight while the Gaussian distribution ranked second to the Weibull maximum 

likelihood estimates. The maximum likelihood estimates, particularly the Gamma and 

Weibull distributions,  performed better than the Weibull percentiles approach in 

generalizing the predicted theoretical curve to the observed discrete distribution, on 

account of the fitting procedure which took full advantage of the discrete bins in the 

maximum likelihood estimation.  On the other hand, when less information (i.e. wider bins) 

was available as was the case at Horse Foxhole, the Weibull percentiles approach was more 

plausible than the maximum likelihood approach.  

 

While the overall generalization of the distribution to the observed discrete distribution is 

important, it is more crucial to maximize the log relative likelihood within the marketable 

tuber size fraction of the main crop (45 mm to 65 mm), where the mode of the distribution 

occurs. This is because the primary goal of modelling tuber size distribution is to estimate 

the tuber size fraction with the highest probability density, which is then used to predict 

tuber yield at harvest using the Travis et al (1987) procedure. Table 8 shows the log relative 

likelihood of marketable tuber number and weight proportions. With respect to tuber 

number, the results show that the Weibull percentiles approach generalizes better than all 

the three other approaches, on account of its high relative likelihood. The closed form of the 

percentiles approach meant that the differences between the estimated proportions and 

the actual proportions was very small, with log relative likelihood approaching zero. For the 

maximum likelihood approaches, better generalization to the overall distribution meant less 

goodness of fit in the marketable tuber portion where the mode of the distribution occurs. 

The same result was observed with respect to tuber weight, where the Weibull percentiles 

approach performed better that all three other approaches on account of its high log 

relative likelihood. 
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Table 8: Average log relative likelihood estimate and confidence intervals of fitted Gaussian, 

Weibull, Gamma and Weibull Percentiles curves to the 45 mm to 65 mm size band of potato 

tuber size distributions at five, relative to the likelihood of the observed discrete distribution 

 Distr.1 HF7 B.Hill2 C.Leasow3 Deaton 6 H. Foxhole4 

Marketable Tuber Numbers 

Gaussian -4.05±0.19 -2.10±0.13 -1.45±0.2 -6.81±0.14 -13.97±0.12 

W.MLE5 -2.64±0.2 -2.23±0.14 -0.79±0.2 -4.50±0.15 -11.49±0.11 

Gamma -6.83±0.17 -3.62±0.12 -2.82±0.18 -11.89±0.13 -22.18±0.1 

W.Perc6 0.00±0.02 -0.17±-0.11 -0.12±-0.02 0.00±0.02 0.00±0.49 

Marketable Tuber Weight 

Gaussian -223.53±0.03 -171.91±0.03 -88.92±0.03 -186.17±0.02 0.53±1.25 

W.MLE -29.73±0.02 -66.03±0.02 31.75±0.03 -85.66±0.02 0.53±1.28 

Gamma -405.03±0.02 -318.12±0.02 -212.83±0.02 -382.95±0.02 0.53±1.31 

W.Perc  0.00±0.02 -0.03±0.01 -0.08±0.02 0.00±0.02 0.00±0.05 

1= Distribution. 2 = Buttery Hill. 3 = Crabtree Leasow. 4 = Horse Foxhole. 5 = Weibull 

distribution with parameters estimated by maximum likelihood estimation. 6 = Weibull 

distribution with parameters estimated by the percentiles approach 

 

With respect to both tuber number and weight, the Weibull distribution was also the most 

plausible of the three models fitted by maximum likelihood estimation. This analysis showed 

that the Weibull distribution with the percentiles approach had the highest log relative 

likelihood of the observed marketable tuber profile, making it the best candidate for 

describing the TSD for the purposes of predicting the modal tuber size. However, the 

maximum likelihood estimate of the Weibull distribution proved to be a better model for 

generalizing the overall distribution outside the marketable component.  

Using the Weibull distribution with maximum likelihood estimation as a benchmark, the 

deviation of the other models from the benchmark in the prediction of the modal tuber size 

was as shown in Table 9.  
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Table 9: Root Mean Square Error (RMSE) of estimates from the Gaussian, Gamma and 

Weibull (Percentiles approach) benchmarked against the Weibull model with Maximum 

Likelihood Estimation (MLE) 

Tuber Number 

Location gauRMSE1 gamRMSE2 weiRMSE3 shapeRMSE4 scaleRMSE5 

HF7 1.63 5.08 2.57 0.77 1.83 

B.Hill6 2.21 3.91 5.49 0.78 3.05 

C. Leasow7 1.55 4.36 2.53 1.21 1.82 

Deaton 6 1.63 5.06 2.04 0.76 1.17 

H.Foxhole8 0.85 6.71 2.99 1.21 1.75 

Tuber Weight 

HF7 2.24 3.85 1.36 1.19 1.51 

B.Hill 1.94 4.25 1.57 1.25 1.47 

C. Leasow 2.17 3.84 1.35 1.07 1.70 

Deaton 6 2.28 3.82 1.16 0.76 1.03 

H.Foxhole 2.48 3.63 2.63 3.06 2.15 

1= RMSE of the mode of Gaussian model vs Weibull MLE, 2 = RMSE of the mode of the 

Gamma model vs Weibull MLE. 3 = RMSE of mode of the Weibull percentiles model vs 

Weibull MLE. 4 = RMSE of Weibull percentiles shape vs Weibull MLE. 5 = RMSE of Weibull 

percentiles scale vs Weibull MLE. 6 = Buttery Hill. 7 = Crabtree Leasow. 8 = Horse Foxhole. 

 

With respect to tuber weight, the Weibull percentiles approach yielded the lowest RMSE to 

the Weibull maximum likelihood approach’s mode estimation at all locations except Horse 

Foxhole. However, as seen in Table 7, the percentiles approach was the most plausible 

model at Horse Foxhole, therefore its low RMSE was considered to be due to the lesser 

accuracy of the Weibull maximum likelihood approach at this location. These results were 

mirrored in the RMSEs of the modal tuber weight as shown in Table 9. Apart from Horse 

foxhole, the RMSE of the shape parameter between the maximum likelihood and 

percentiles approaches at all locations was within 1.5 units, showing that the percentiles 

approach approximated the shape of the distribution comparably to the benchmark. Similar 

observations were made for the scale parameter. At Horse Foxhole, higher RMSEs were 
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observed, partially attributable to the lesser accuracy of the maximum likelihood approach. 

The analysis showed that the percentiles approach was comparable to the maximum 

likelihood approach in the estimation of the modal tuber size and yielded the highest log 

relative likelihood of the observed marketable yield. Therefore the distribution shape, scale 

and modal tuber size as estimated using the percentiles approach were tested for their 

predictability using within-field soil nutrient variation. 

3.1.3.3 Linear Modelling 

Table 10: Linear modelling results for the relationships between soil nutrients (and stem 

density) and TSD parameters with respect to tuber number 

Response Predictors Estimate nRMSEfixef
1 delta AICc2 D.F.3 ICC14 

Shape Intercept 4.35±0.63 

0.18 7.15 75.66 0.37 

  Stem 
Density 

-0.04±0.17 

  Phosphorus -0.74±0.33 

  Nitrogen -0.29±0.25 

  

Scale Intercept 49.15±7.22 

0.13 14.77 72.19 0.87 

  Stem 
Density 

-0.98±0.63 

  Phosphorus 0.92±0.27 

  Nitrogen 1.44±1.16 
 

Mode Intercept 45.71±8.05 

0.14 11.41 72.66 0.83 

  Stem 
Density 

-1.08±0.78 

  Phosphorus -2.37±1.99 

  Nitrogen 0.85±1.40 

1= Normalized Root Mean Square Error of the fixed effects model, with random effects set 

to zero. 2 = change in the conditional Akaike Information Criteria between the current 

model and the random intercept model. 3 = effective degrees of freedom. 4 = Intraclass 

correlation of the random effects. 



93 

 

Table 10 shows the linear modelling results for the relationships between soil nutrients and 

TSD parameters with respect to tuber number. Stem density was also included as a fixed 

effect. For the shape parameter, no significant relationship was observed with the stem 

density, with a very low regression coefficient (-0.04) as shown in Table 10. The coefficients 

suggested that the proportional number of tubers falling into the pre-defined size bands 

was not affected by the stem density. However, P and N were observed to negatively 

associate with the shape parameter with statistical significance through the confidence 

intervals as shown in Table 10. The strongest negative relationship with the shape 

parameter was observed with P, suggesting that P increased the proportional numbers of 

small-sized tubers. The overall effect of P on the tuber size distribution at the four sites 

were as shown in Figure 16, where the average shape and scale parameter from low-P 

samples (P concentration less than the location’s mean) and high-P samples (P 

concentration higher than the location mean) were plotted to visualize the relationship. 

 

Figure 16:  Illustration of the effect of Phosphorus concentration on the tuber size distribution 

at Deaton 6 (A), Buttery Hill (B), HF7 (C), and Horse Foxhole (D). 
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For the scale parameter, a significant negative relationship was observed with stem density, 

with a standardized regression coefficient of -0.98, suggesting that increased stem densities 

led to a decrease in the overall range of the distribution. Positive relationships with the scale 

parameter were observed for P and N, suggesting that the two nutrients increased the 

overall range of the distribution, though only P was observed to hold a statistically 

significant relationship. Overall, increase in P at all four locations was associated with a shift 

of the TSD towards a right skew, leading to a lower probability density of the modal tuber 

size. As shown in Table 8, the mode of the distribution with respect to tuber number was 

also significantly related to the stem density and P, with a statistically significant regression 

coefficient of -2.37 for P. Setting the random effects to zero, the fixed-effects-only model 

had an nRMSE of 0.14 for the mode, suggesting that the expected modal tuber size across 

the field can be predicted to acceptable accuracy using stem density and soil nutrient 

information, with a Matern covariance structure fitted across the surface.  

 

Table 11 shows the regression coefficients of the shape, scale and mode variables of the TSD 

(with respect to tuber weight) as a function of stem density and the concentrations of soil 

nutrients. The shape parameter was negatively related to stem density with a regression 

coefficient of -0.31, showing that increasing stem numbers moderately associated with a 

shift of the TSD towards a right skew. The same association was also observed with 

nutrients P and N, suggesting that increased soil nutrient concentrations in these soils were 

associated with an increase in the proportion of low-weight tubers. The relationships 

between the three variables and the shape parameter were all significant as evaluated 

through their non-zero confidence intervals. The fixed-effects-only model fitted the data 

with an nRMSE of 0.22. Stem density also had a significant negative association with the 

scale parameter, which suggested that observations with relatively high stem densities had 

a smaller range of tuber sizes with a higher concentration of small tubers. Phosphorus and 

nitrogen had significant positive relationships with the scale parameter, suggesting that the 

overall range of the distribution was increased with the increase of these soil nutrients. 

Potassium was also negatively related to the scale parameter. The fixed effects explained 

the variation in the scale parameter with an nRMSE of 0.09. The model fitted for the modal 

tuber size showed significant negative relationships between stem density and tuber size. 

Phosphorus and nitrogen both had positive relationships with the mode as shown by the 
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positive regression coefficients in Table 11.  However, the P relationship was not significant 

as evaluated the zero-coverage of the confidence interval. The fixed effect coefficients fitted 

the observed data with an nRMSE of 0.21. 

Table 11: Linear modelling results for the relationships between soil nutrients (and stem 

density) and TSD parameters with respect to tuber weight 

Response Predictors Estimate nRMSEfixef
1 delta AICc2 D.F.3 ICC14 

Shape Intercept 7.46±0.36   

0.22 

  

  

  

5.01 

  

  

  

77 

  

  

  

0.37   Stem Density -0.31±0.59 

  Phosphorus -1.3±0.62 

  Nitrogen -0.89±0.63 

  

Scale Intercept 56.26±5.79   

0.09 

  

  

  

  

12.69 

  

  

  

  

74.23 

  

  

  

  

0.72   Stem Density -0.99±0.78 

  Phosphorus 2.6±1.83 

  Nitrogen 2.1±1.17 

  Potassium -0.75±0.8 
 

Mode Intercept 54.79±6.28 

0.21 11.94 75.14 0.79 
  Stem Density -1.04±0.69 

  Phosphorus 1.27±1.57 

  Nitrogen 1.35±1.07 

1= Normalized Root Mean Square Error of the fixed effects model, with random effects set 

to zero. 2 = change in the conditional Akaike Information Criteria between the current 

model and the random intercept model. 3 = effective degrees of freedom. 4 = Intraclass 

correlation of the random effects 

3.1.4 Discussion 

3.1.4.1 Tuber Size Distribution Model  

The findings of the study showed that potato TSD was more consistent with the Weibull 

distribution than the Gamma and Gaussian distributions, in agreement with Nemecek et al. 
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(1996) and Bussan et al. (2007). The log relative likelihood analysis of the overall distribution 

showed that the maximum likelihood approaches generalized to the observed discrete 

proportions better than the percentiles approach and the Weibull distribution maximum 

likelihood approach was the best method for generalizing the shape and scale of the 

distribution. However, in the context of this study, the percentiles approach performed 

better at maximizing the likelihood of the tuber size fraction of interest (45 mm to 65 mm) 

because its closed form offered the opportunity to maintain the likelihood of this desired 

size fraction accurately. Ultimately, the main goal of TSD modelling is to maximize the 

likelihood of modelling the correct modal tuber size, which will fall within a pre-defined 

tuber size interval. The log relative likelihood analysis demonstrated empirically for the first 

time that the percentiles approach for parameter estimation performs comparably to the 

maximum likelihood approach in the estimation of the marketable tuber size fraction. 

Additionally, the Weibull percentiles approach had the lowest RMSE for the prediction of 

the modal tuber size, in comparison with the benchmark best-performing Weibull 

distribution with maximum likelihood estimation, while maintaining the highest relative 

likelihood for the frequency of the marketable 45 mm to 65 mm size fraction.   

Large variation in the Weibull shape parameter for TSD modelled against both tuber number 

and weight proportions further shows the merit of adopting a flexible distribution function, 

in contrast to Nemecek et al. (1996) who suggested an average Weibull shape parameter of 

2.3 as a general solution to simulate a right-skewed distribution. However, Nemecek et al. 

(1996) used tuber samples from potatoes grown for a seed market, which are desiccated 

early with less time allowed for tuber bulking. In the current study, some visually right-

skewed distribution was observed at Buttery Hill, which also had the smallest average tuber 

size. The Weibull distribution best modelled the Buttery Hill crop as evidenced by the log 

relative likelihoods of both the overall distribution and the marketable portion. However, 

the average shape parameter was 3.4 for TSD modelled after proportional tuber numbers 

and 6.46 for TSD modelled after proportional weight. This showed that proportional tuber 

numbers where roughly symmetrically distributed around the modal tuber size, but the 

proportional weights were slightly left-skewed because of a higher weight per tuber of the 

larger tubers. Similarly across all locations, the predicted modal tuber size with respect to 

tuber weight was larger than the modal tuber size with respect to tuber numbers. This is in 

line with principles of scaling whereby the weight of an object is proportional to its volume, 
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which is in turn proportional to the cubic power of its linear dimensions, the principle 

behind the use of the modal tuber size for predicting yield in Travis et al (1987). Therefore, 

in an assumed Gaussian distribution of tuber numbers, the distribution of tuber weights can 

be expected to be slightly left-skewed with a higher modal size with respect to proportional 

tuber weights on account of an exponential increase of weight per tuber with increasing 

tuber size.  These findings provide further evidence that the assumption of a Gaussian 

distribution as adopted by Travis (1987) does not universally hold true.  

Struik et al. (1991) observed an initial right skewed TSD with a modal tuber size gradually 

shifting to the right as more time was allowed for tuber bulking by shifting the harvest date. 

There is good evidence therefore that the overall shape of the distribution is influenced by 

the average tuber size, which depends on the time of observation, tuber bulking rate and 

the timing of harvest. It can be argued that the Gaussian (Sands & Regel, 1983), Log-normal 

(Marshall et al., 1993) and Gamma (Aliche et al., 2019) distributions, as well as the Weibull 

distribution with a fixed shape parameter, are all instance-specific realizations of an 

underlying dynamic distribution that is a function of the tuber bulking status at the time of 

observation. In turn, tuber bulking rates are controlled in part by the efficiency of source-

sink transportation of photosynthates which depends on the plant nutrition status of the 

crop (Struik et al., 1991). Allowing for a flexible shape parameter, the current results suggest 

that the Weibull distribution is the best estimator of the TSD curve at any stage of tuber 

development for the most representative prediction of the modal tuber size, which is the 

main purpose for modelling TSD.  

A method for non-destructively modelling TSD is desirable for temporal monitoring of 

the changes in TSD. To achieve this, one of the parameters in the Weibull distribution needs 

to be modelled as a function of a non-destructively measurable variable. Both Nemecek et 

al. (1996) and Bussan et al. (2007) chose to model the scale parameter from empirical data, 

however they did so for different reasons. Nemecek et al. (1996) suggested a fixed Weibull 

shape parameter, as they empirically observed that distribution fit was relatively invariant in 

their dataset. However, Bussan et al. (2007) explicitly modelled the scale parameter because 

it had a high correlation to measured stem and tuber density. In the current study, the 

shape parameter had higher within-field variability than the scale at all study sites as 

measured by the CV, regardless of the method by which TSD was measured (i.e. as a 

function of proportional tuber number or weight). 
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3.1.4.2 Effect of Soil Factors on Tuber Size Distribution 

Literature on TSD is dominated by plant population studies, with the number of stems per 

unit area being reported to have a negative effect on indicators of TSD and tuber number 

(Aliche et al., 2019; Bussan et al., 2007; N. R. Knowles & Knowles, 2006). These past findings 

all support the hypothesis that higher stem numbers per unit area increase the tuber 

number per unit area at the expense of tuber size, leading to more uniform but smaller-

sized tubers. The results of the multivariable regression are in general agreement with these 

findings as stem number per unit area had the most consistent negative regression 

coefficients with the modal tuber size and the scale parameter of TSD, regardless of 

whether TSD was modelled with respect to proportional tuber numbers or weight. A lower 

scale parameter associated with increased stem number means that there was a smaller 

probability density of large tubers, supporting the previous findings. The standardized 

regression coefficients for stem number suggest a large effect size of stem number on the 

modal tuber size and scale, to provide further support to the hypothesis that stem density 

increase significantly affects tuber size. Stem density also had consistently negative 

relationships to the shape of the distribution but the effect size was low, This may be 

interpreted to mean that bulking rates of large tubers are reduced  in the presence of high 

stem numbers but the tuber filling is not altered to particularly favour any one of the other 

predefined size classes significantly.  

The results suggest that the effects of soil macronutrients on TSD may be important, 

considering the negative associations between P and the shape parameter with a high effect 

size for TSD measured with respect to tuber number or weight. This is consistent with 

findings that  high P tests (25 to 33 mg/kg) may be associated with an increase in the 

proportion of small tubers in the TSD, attributed to increased vegetative growth at the 

expense of tuber bulking (see Birch et al., 1967; Prummel & Barnau-Sijthoff, 1984; Rosen & 

Bierman, 2008; Sharma & Arora, 1987).  

In the current study, the lowest concentration of available P was observed at Deaton 6 (41 

mg/kg), with up to 100 mg/kg at Buttery Hill, which were much greater than the soil P tests 

at which negative effects were observed in the Rosen & Bierman (2008) study. While 

positive effects of P on tuber yield components have been reported from replicated 

experiments by Freeman et al. (1998), the responses were in low P soils and an asymptote 

was reached at 27 mg/kg for the Kennebec variety. The results give evidence of a significant 
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negative relationship between P concentrations and the modal tuber size with respect to 

tuber numbers, meaning that the proportional number of smaller tubers increases as P 

concentration increases. However, the scale of the distribution with respect to both tuber 

number and weight was increased with increase in P concentration. This suggests that P did 

not affect the tuber filling hierarchy but led to induction of more tubers that remained 

within the small size fraction. The smaller tubers are expected to have a relatively low 

contribution to the overall yield therefore the positive effect of P on the scale of the 

distribution can be expected to positively affect the modal tuber size as observed in the 

study.  

As a possible explanatory mechanism, potatoes are known to maintain P uptake even 

at high soil P tests like the ones observed in the current study (Jasim et al., 2020), thereby 

accumulating inorganic P in the cytosol. Inorganic phosphate accumulation is inhibitory to 

the activity of ADP-glucose pyrophosphorylase and subsequently inhibit starch synthesis and 

accumulation in sink organs (Crafts-Brandner, 1992; Kleczkowski, 1999; Tiessen et al., 2002). 

A tuber-filling hierarchy has been previously shown whereby larger tubers grow the fastest 

and increase the spread of the TSD (Mackerron et al., 1988), therefore high P concentrations 

can be expected to contribute to increased proportions of small tuber numbers without 

penalizing the scale of the distribution as shown in the study. 

There have been a few previous studies where the effect of soil nutrients on TSD was 

systematically studied. Wurr et al. (1993) found that N had a significant effect of TSD 

measured as the spread (CV %) of tuber sizes (assuming a Gaussian distribution), however 

they found no effect of P. The findings by Wurr et al. (1993) are also reflective of the design-

intrinsic large concentration gradients of the nutrient treatments in controlled experiments, 

where N becomes a limiting nutrient hence its effects are emphasized. In the adequately-

fertilized sites of the current study where N was not a limiting factor for production, the 

evidence suggests that P equally contributes to the underlying model that explains within-

field variation in TSD. Nitrogen was largely found to have the same effects on TSD 

parameters as P, with high standardized regression coefficients on the scale and mode with 

respect to tuber weight suggesting that N increases the variability in tuber size, in alignment 

with Wurr et al (1993). High N was associated with a lower shape parameter, showing a 

particularly high effect size with respect to tuber weight. However, wide confidence 

intervals call for a more precise estimation of the relationship.  
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These findings mean that field variation in expected TSD can be constructed from soil 

data by modelling the shape parameter and scale parameter for the field. The scale and 

shape parameter can also be calibrated by mid-season yield digs. The beneficial properties 

of N and P on tuber yield are well documented in the literature and formulate the basis of 

crop fertilization modelling with the assumption of a Mitscherlich exponential growing 

process with a horizontal asymptote. The current findings suggest the existence of an 

inflection point after which over-fertilization results in a linear reduction in the shape of the 

TSD.  

3.1.5 Conclusion 

In conclusion, the study has shown that the shape parameter of the Weibull distribution 

determined using a linearized cumulative probability function provides an adequate index 

for describing the overall shape of TSD and performs better than the Gaussian and Gamma 

distributions in simulating observed TSD. The linearized formulae for the Weibull shape and 

scale presented in the current paper can be easily implemented in spreadsheet software at 

the farm level. Using the shape parameter, agronomists can improve the monitoring 

methods of the temporal shift in TSD from yield digs and (where large tubers are preferred) 

aim for symmetrical (shape ~3) or left skewed (shape >3) TSD. With the availability of 

Weibull cumulative probability functions in popular spreadsheet software, tuber numbers in 

any discrete size grades can be calculated from the modelled shape and scale parameter. 

From the current study, the shape parameter had larger within field variability than the 

scale parameter and was significantly affected by excess P and N. Ultimately, high intensity 

soil maps of these elements can enable high-resolution modelling of spatial TSD variation. 

While requirements for high intensity soil sampling remain prohibitive, modelling of soil 

variability using co-kriging proxies like apparent electrical conductivity becomes important 

and relevant for generating high resolution field variation for decision-support. Subsequent 

studies to validate these findings in more environments are recommended, as well as 

controlled studies to investigate the general point of inflection at which additional 

fertilization becomes detrimental to TSD. 
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3.2 Examination of the Relationship between Apparent Electrical Conductivity and Soil 

Physical and Chemical Properties 

Abstract 

The costs of high intensity soil sampling are high and alternative approaches where soil 

properties can be inferred from easily collected measurements are increasingly being 

sought after in commercial crop production.  In particular, the relationship between 

Apparent Electrical Conductivity (ECa) and its relation to variability in soil water content and 

salinity have led to increased interest in its use as an index for delineation of management 

zones for precision agriculture. ECa has also been suggested as a proxy to the variability of 

soil mineral constituents but the reproducibility of correlations between ECa and soil 

mineral concentrations have not been consistent. In this study, ECa was determined at 

Buttery Hill and Deaton 6 Fields with the purpose of relating it to measured soil mineral 

consitituents. The aim of this study was to examine the suitability of ECa as a proxy to soil 

macronutrient concentrations and texture in typical potato fields. Accordingly, soil particle 

distribution was measured using the sedimentation method and mineral constituents were 

measured using various methods including the Dumas method for N, C and S, the Olsen 

method for P and flame photometry using ammonium nitrate as an extractant for K and Mg. 

The results showed no strong correlations between ECa and all the soil macronutrients at 

both sites. For soil particle distribution, no correlations with ECa were observed at Deaton 6  

while significant correlations were observed at Buttery Hill for Sand (P<0.001), Silt (P<0.001) 

and Clay (P = 0.01). These results showed the contextual nature of ECa and why 

understanding the locally contributing edaphic factors is important before it can be used for 

agronomic recommendations on soil management.  

3.2.1 Introduction 

Potato production is predominantly based on uniform management of the crop through 

predetermined seed rates, uniform irrigation and fertilisation throughout the season. 

Cambouris et al. (2006) report that variability of tuber sizes in this system can be addressed 

through delineation of field management zones based on the Electromagnetic Induction 

(EMI) properties of the soil, particularly the Apparent Electrical Conductivity (ECa) of the 

soil. The ECa is a proxy to understanding soil composition because it is an expression of the 
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collective effect of the soils mineralogical and hydrological composition (Castro-Franco et 

al., 2015). In experiments by Cambouris et al. (2006), ECa-based delineated zones were 

subjected to variable nitrogen application, leading to a more uniform tuber yield. There are 

extensive similar studies where ECa has been successfully used to predict field variability in 

salinity (Li et al., 2011), soil organic matter (SOM), cation exchange capacity (CEC) and soil 

gravimetric water content (Castro-Franco et al., 2015). High resolution georeferenced ECa 

maps have gained interest as a precision agriculture tool for delineation of management 

zones, however, their value as proxies to important soil nutrients has not been established 

to justify large scale adoption in commercial potato production.  

Based on this background, field surveys were conducted to evaluate the relationship 

between, ECa and other edaphic factors 

3.2.2 Data and Methods 

3.2.2.1 Site Characterisation  

The study was conducted at Buttery Hill and Deaton 6 as described in Section 3.1.2.1. 

Deaton 6 was located in the East of England (Lincolnshire) on reclaimed marsh land with a 

shallow water table and high organic matter content. There was variation in soil physical 

and chemical properties across the field due to the presence of Roddons, historical features 

in drained marshland soils where silty clay soils follow the course of historical streams and 

waterways. Buttery Hill was located in the West of England (Shropshire) on well-drained 

slightly stony, sandy loam soil subtended by weathered sandstone with low variation in soil 

nutrients across the field.  

3.2.2.2 Soil Sampling and Analysis. 

A field survey was designed at each of the four fields using a model-based sampling 

approach to determine representative soil sampling locations that captured the variability in 

the field. Accordingly, the soil sampling and analysis were conducted as described in 3.1.2.2 

and 3.1.2.3 respectively. 
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3.2.2.3 Apparent Electrical Conductivity  

ECa data was collected through a third party service (Precision DecisionsTM) at 3 m swath 

width across the field using the GeonicsTM EM-38 ECa scanner, giving a sampling intensity of 

1 sampling point per 13.6 m2. At each sampling point, ECa was measured at Shallow depth 

(0-75 cm) and Deep depth (75-150 cm) and georeferenced with DGPS coordinates with 5 cm 

accuracy. ECa data was measured in milli Siemens per meter (mS/m). 

3.2.2.4 Geostatistical Interpolation and Data Analysis 

The Matern covariance structure was fitted to model the spatial autocorrelation of ECa data 

and interpolate to the locations where soil sampling was done. After some iterative curve 

fitting, a kappa parameter fixed at 0.5 was chosen to construct the theoretical variogram to 

fit onto the experimental variograms constructed from the shallow and deep ECa data at 

both Buttery Hill and Deaton 6. The spatial autocorrelation was assumed to be 

omnidirectional and the presence of drift was accounted for by fitting a first order 

polynomial at Buttery Hill. The fitted variograms were then used to predict the ECa values at 

the soil sampling locations at both sites using ordinary kriging. The interpolated ECa values 

at the positions where soil sampling was done were extracted and appended to soil analysis 

results. Pearson’s Product Moment Correlation Coefficient analysis was used to create a 

correlation matrix of all variables under consideration to examine the presence of any 

relationships. 

3.2.3 Results 

3.2.3.1 General Ranges of Data 

Table 12 shows the summary statistics for the variation in a selected set of variables. A 

relatively high C content of 124.6 g/kg was observed at Deaton 6, reflective of the high 

organic matter content of the marsh reclaimed soils. In comparison, 12.9 g/kg of C was 

observed at Buttery Hill. Deaton 6 also had a higher content of N (9.4 g/kg) that Buttery Hill 

(1.3 g/kg). The two soils had similar levels of K, however, Buttery Hill had a very high content 

of P (100 mg/kg) compared to Deaton 6 (41 mg/kg).  Deaton 6 contained silty clay soils with 

an anerage 55% Silt and 39% Clay while Buttery Hill was a sandy loam soil with 66% sand. As 
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shown in Table 12, substantial differences were observed between ECa75 and ECa150 at both 

sites, with ECa readings increasing with depth at both sites consistently.  

Table 12: Summary statistics of major variables considered for analysis 

Soil Property Deaton 6 Buttery Hill 

Mean CV1 Mean CV1 

Clay (%) 38.5 0.19 9.3 0.15 

Silt (%) 55.4 0.12 24.6 0.21 

Sand (%) 6.1 0.31 66.1 0.09 

N (g/kg) 9.4 0.29 1.3 0.12 

C (g/kg) 124.2 0.36 12.9 0.12 

S (g/kg) 3.3 0.47 0.3 0.12 

P (mg/kg) 41.2 0.15 100.0 0.13 

K (mg/kg) 291.3 0.27 276.8 0.18 

Mg (mg/kg) 185.0 0.29 87.4 0.12 

ECa Shallow 

(mS/m) 

17.80 0.23 3.18 0.48 

ECa Deep 

(mS/m) 

41.43 0.25 11.23 0.34 

1 = Coefficient of variation 

3.2.3.2 Variography 

Figure 17 and Figure 18 show the fitted variograms at Buttery Hill for ECa75 and ECa150 

respectively. While an exponential variogram best fitted both ECa75 and ECa150 

semivariance, ECa75 showed a rougher autocorrelation structure (practical range = 8 m) 

compared to ECa150 (practical range = 180 m). This entailed rapid deterioration in spatial 

autocorrelation at the surface, as evidenced by the steep increase in semivariance with 

respect to distance in Figure 17, compared to a slower increase at ECa150 (Figure 18). Similar 

observations were made at Deaton 6, where ECa75 had a lower practical range (125 m) than 

ECa150 (182 m). However, the deterioration in horizontal autocorrelation at Deaton 6 with 

respect to depth was less obvious, as evidenced by the similar fitted variogram trends in 

Figure 19 and Figure 20. This suggested that Deaton 6 had more vertically homogeneous soil 
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than Buttery Hill and the higher practical ranges show a smoother horizontal process 

governing the properties of the soil compared to Buttery Hill. 

 

Figure 17: Experimental variogram of apparent electrical conductivity of soil at Buttery Hill in 

the first 75 cm depth 

 

Figure 18: Experimental variogram of apparent electrical conductivity of soil at Buttery Hill 

between 75 cm and 150 cm depth 
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Figure 19: Experimental variogram of apparent electrical conductivity of soil at Deaton 6 in 

the first 75 cm depth 

 

Figure 20: Experimental variogram of apparent electrical conductivity of soil at Deaton 6 

between 75 cm and 150 cm depth 
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3.2.3.3 Correlation between ECa and Soil Properties 

At Buttery Hill, strong correlations were observed between ECa and the proportions of sand 

and silt. ECa75 and ECa150 had r = 0.76 correlation with silt proportion and r = -0.73 with sand 

proportion (Table 13). This suggested that electrical conductivity reduced with increasing 

sand proportion and increased with silt proportion. Weak positive correlations were 

observed between clay proportions and ECa75 (r = 0.47) and ECa150 (r = 0.45). No strong 

correlations were observed between all measured soil nutrients and ECa at both depths at 

Buttery Hill. The highest correlation was observed between ECa75 and Mg (r = 0.33) but this 

was a weak and non-significant correlation. No strong correlations were observed between 

ECa at the two depths and all the soil properties at Deaton 6. Soil nutrients N, C, and S had 

consistently negative correlations with ECa at both sites but none of the correlations were 

significant, suggesting against the use of ECa as a proxy to soil nutrient concentrations at 

these two sites.  

Table 13: Correlation coefficients between Apparent Electrical Conductivity and edaphic 

factors at Buttery Hill and Deaton 6 

 Buttery Deaton 6 

Soil Property ECaShallow ECaDeep ECaShallow ECaDeep 

N -0.01 -0.05 -0.31 -0.26 

Clay  0.47*  0.45*  0.23  0.30 

Silt  0.76***  0.76*** -0.21 -0.27 

Sand -0.73*** -0.73*** -0.12 -0.19 

C -0.03 -0.05 -0.26 -0.21 

S -0.07 -0.10 -0.29 -0.24 

Ph -0.18 -0.14  0.22  0.17 

P -0.23 -0.33  0.06 -0.02 

K  0.14 -0.01 -0.19 -0.25 

Mg  0.33  0.28 -0.20 -0.19 

 



108 

 

3.2.4 Discussion 

The results of the variography show that at ECa150 depths where interference from non-

edaphic factors is relatively limited, a smoother Gaussian process relative to ECa75 depths 

governs the variation in ECa. This suggests that ECa at this depth is likely governed by soil-

forming processes which act on a spatial scale larger than the typical size of the field. 

Delbari et al. (2019) equally suggested that spatial variability in soil within a field is partially 

governed by large scale soil forming processes. Within ECa75, where the potato root zone is 

likely to be, ECa variability is relatively rougher with a shorter practical range, which may be 

due to the influence of agricultural activity on soil porosity in the plough layer that alters the 

water holding and aeration properties of the soil, the main drivers of ECa (Corwin & Lesch, 

2005). This is in line with findings by (Minasny & McBratney, 2005), who observed rough 

spatial autocorrelation in soil, reasonably estimated by the exponential model (kappa = 0.5). 

However, Minasny and McBartney also observed a smooth process governing ECa (Kappa = 

3), though they attribute this finding as an artefact of their data collection process where 

measurements overlapped and the depth of the ECa scan was not apparent from their 

report. The implications of a rough autocorrelation are that a high sampling intensity is 

required to produce credible maps of spatial variation. Higher ECa scanning intensities are 

likely to come with cost, therefore the potential utility of ECa depends on whether useful 

correlations can be established with soil nutrients.  

In line with widely reported observations (Cambouris et al., 2006; Perron et al., 2018; 

Valente et al., 2012), no strong correlations were observed between ECa and any soil 

Macronutrients at either site. Perron et al. (2018) found that ECa was more influenced by 

physical properties (texture and water content) than nutrient concentrations, in agreement 

with the findings at Buttery Hill. However, despite the large variation in the particle size 

distribution at Deaton 6 (Sand CV = 0.31), the textural classes showed no significant 

correlation to ECa. These results are similar with observations by Perron et al. (2018) where 

ECa was strongly related to soil texture properties in one field and not correlated in another 

field. These results show the contextual nature of ECa and why understanding the locally 

contributing edaphic factors is important before it can be used for agronomic 

recommendations on soil management.  
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The correlations between ECa, and sand as well as clay observed at Buttery Hill agree with 

the findings of Cambouris et al. (2006) and Perron et al. (2018). In both studies, sand 

concentrations were generally negatively correlated to ECa, with Perron et al. (2018) finding 

similar correlations to observations in the current study. In line with both Cambouris et al 

(2006) and Perron et al. (2018), clay concentrations were positively correlated to both ECa75 

and ECa150, at both current sites. Additionally, although Deaton 6 had very high C content 

with very high variability (CV = 0.36), no significant correlation with ECa at any depth was 

observed. Cambouris et al. (2006) also report no significant effect of organic carbon on ECa.  

In agreement with Cambouris et al. (2006), Perron et al. (2018) found that ECa was more 

influenced by physical properties (texture and water content) than nutrient concentrations. 

It must be noted that the Cambouris et al. (2006) experiment was done in soils with a mean 

of 2.4% organic C and 80% sand, while in the Perron et al. (2018) study, the total C 

percentage was 2.1 ppm and 3.41% sand. These low C and high sand values partly explain 

the differences in the significance of C from this study and further strengthen the case for 

interpreting ECa data side-by-side with soil nutrient data. 

3.2.5 Conclusion 

The observations showed that ECa is a poor predictor of soil nutrients, suggesting that the 

premise of using ECa as a proxy to soil nutrient variation is likely only plausible in some 

contexts and cannot be generalized. ECa was shown to be a spatially rough process at the 

top soil but the autocorrelation becomes smoother with a longer practical range as depth 

into the soil is increased. This entails the need for high intensity sampling in precision 

agriculture (up to 8 metre swath widths to cover the range of autocorrelation observed in 

this study) in order to produce accurate maps. However, the low correlations between ECa 

and soil Macronutrients show that this approach only has limited applicability in the 

production of high-resolution soil nutrient maps without case-by-case data analysis. 

Adoption of this approach in a typical commercial precision agriculture would therefore 

require bespoke investigations on the nature of the relationship between ECa and soil 

nutrients at each location. 
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CHAPTER 4 - Applying Colour-Based Feature Extraction and Transfer Learning to Develop a 

High Throughput System for detecting Potato (Solanum tuberosum L.) Stems with Images 

from Unmanned Aerial Vehicles after Canopy Consolidation. 

Abstract 

Potato (Solanum tuberosum) stem density variation in the field can be used to inform 

harvest timing to improve tuber size distribution. Current methods for quantifying stem 

density are manual with low throughput. This study examined the use of Unmanned Aerial 

Vehicle imagery as a high-throughput alternative. A colour-based feature extraction 

technique and a deep convolutional neural network (CNN) were compared for their 

effectiveness in enumerating apical meristems as a proxy to subtending stems. Two novel 

colour indices, named the Cumulative Blue Differences Index and Blue Difference 

Normalized Index, showed significant differences (P<0.001) between meristematic leaves 

and mature leaves in comparison to other indices. The two indices were used to generate 

500 pseudo-labelled human-corrected images as training data for the CNN. Benchmarked 

against a human labelled test dataset, the CNN performed better with a normalized Root 

Mean Square Error (nRMSE) of 0.09 than the sole use of the image analysis algorithm 

(nRMSE = 0.3) in predicting the number of meristems in a canopy at 52 days after planting. 

Furthermore, the CNN had better precision (Intersection over Union [IOU]: 0.49 and 0.56, 

respectively) than the image analysis algorithm (IOU: 0.33 and 0.13, respectively). Meristem 

counts in both approaches showed a linear relationship with actual subtending stem counts 

(P<0.001). This study demonstrates the validity of using traditional image analysis and CNNs 

to generate meristem detectors with acceptable nRMSE. Transfer learning with CNN is 

proposed for developing meristem detectors for evaluating stem density variation from UAV 

images in the field. 
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4.1 Introduction 

At emergence, Potato (Solanum tuberosum L.) seed tubers produce variable sprout numbers 

depending on the physiological status of the seed, which results in variable stem numbers 

per potato plant (Knowles & Knowles, 2006). Estimation of spatial variation in plant density 

is important in potato production, with several studies linking it to tuber size and total yield 

variations at harvest (Bleasdale, 1965; Gray, 1972; Knowles & Knowles, 2006; Love & 

Thompson-Johns, 1999; Wurr, 1974). Potato growers normally have a market-determined 

target range of optimum tuber size, outside of which the value of the produce declines. 

Therefore it is in the interest of growers to determine the factors that cause tuber size 

variation in the field and tailor management practices to mitigate the effects. 

At the stem level, a negative correlation between potato stem density and mean tuber size 

has been widely recognized (Goeser et al., 2012; Shayanowako et al., 2015) and predictive 

models have been produced to describe potato tuber size distribution using stem density as 

a covariate (Bussan et al., 2007). To counteract the negative effect of stem density on 

average tuber size, several studies propose delayed harvesting to prolong tuber bulking 

period as a strategy to increase tuber size (O’Brien & Allen, 1992; Rębarz et al., 2015; 

Waterer, 2007).  

With this background, there is interest in techniques for quantifying stem density within an 

actively growing crop to enable spatially and temporally variable downstream crop 

management like vine desiccation, in order to maximize yield within desired tuber size 

classes. Manual stem counting in randomly or systematically selected quadrants around the 

field give approximations of stem densities which can be geospatially interpolated to the 

whole field, however this is a laborious, sometimes destructive, and a low throughput 

method. The validity of data interpolation relies on assumption of a random distribution of 

stem numbers or the unpredictable chance of establishing enough spatial autocorrelation in 

stem numbers to model the variation with minimal error, which is not always possible.  

Using the spectral reflectance of potato plants to determine stem numbers from canopies is 

a potential approach for estimating accurate stem density from RGB or multispectral 

sensors mounted on Unmanned Aerial Vehicles (UAVs). This approach offers a high-

throughput solution to estimate variation in stem population across the entire field without 

interpolation. Potato stems terminate with leaf primordia forming the growing tip of the 
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stem, which sometimes convert to floral primordia depending on the variety (Firman et al., 

1995). The leaf primordia therefore represents a distinct unit which can be used to estimate 

the total number of stems in a closed canopy. Plant canopies exhibit unique, species-

dependent, responses to incident radiation, generally showing high absorption in the 

ultraviolet and Blue (490–450 nm), high reflectance in the Green (560–520 nm), high 

absorption in the Red (700–635 nm) and high reflectance in the near-infrared portions of 

the electromagnetic spectrum (800-2500 nm) (Gates et al., 1965).  Variability in chlorophyll 

content, water content and cell-to-air space ratio in the leaves directly influences spectral 

reflectance of plants in the visible  (400-700 nm) range (Cochrane, 2000), which can enable 

the use of computer vision and image analysis techniques to decompose consolidated crop 

canopies and enumerate features of interest based on their spectral reflectance.  

Multispectral sensors with the near-Infrared band operating around 750 - 850 nm, enable 

the use of well-defined vegetation indices like the Normalized Difference Vegetation Index 

(NDVI) to assess and classify crop canopy components. Sankaran et al. (2017) used NDVI to 

extract and count emerging potato plant clusters from images taken at 15 metres above 

ground using a UAV at 32 days after planting with R2 values of up to 0.82 when regressed to 

manual plant counts.  However, predictive power was lost as the canopy gradually 

consolidated at 43 days after planting. The most widely used colour index for individual 

green plant segmentation from canopy remote sensing data is the Excess Green Index (ExG), 

first proposed by (Woebbecke et al., 1995). The index has been used, in combination with 

other indices, for enumerating plant stands in wheat (Jin et al., 2017), rapeseed (Zhao et al., 

2018), and in potatoes (Li et al., 2019), where the index was used to detect potato plant 

clusters at emergence. These techniques provide sufficient accuracy for counting clusters of 

stems from the same mother tuber at emergence before canopy closure. However, 

individual stem enumeration after full crop establishment, which is the level of accuracy 

required in precision farming for variable desiccation management, has not yet been 

reported.  

This study hypothesized that a colour index to extract clusters of leaf primordia and 

enumerate them as a proxy to actual stem counts would potentially offer a solution. 

Following the spectral properties of plants outlined in Gates et al. (1965), an ideal colour 

index would be one that is sensitive to the differences between Blue and Green reflectance 
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since the growing tips have less chlorophyll, thereby exhibiting lower reflectance in the Blue 

range compared to older leaves. The performance of object detectors based on image 

colour calculations depends on the acquisition of high quality imagery with optimum light 

conditions which are not always possible in the field. A deep learning approach therefore 

potentially presents a more robust approach with respect to variation in image quality. 

Ground-truth labelled data is essential in deep learning training pipelines and forms the 

basis of model evaluation in so called supervised learning models. Labelling a large dataset 

of leaf primordia from closed canopies has a large time cost as it requires expertise in 

identifying irregular leaf primordia. Semi-supervised learning therefore becomes a 

potentially important solution. Pseudo-labelling is a widely used technique to train 

Convolutional Neural Networks from non-labelled data with high accuracy. It involves the 

generation of an accurate model from a limited labelled dataset then using the model on 

unlabelled data and selecting all predicted labels that have high confidence as new labels, 

which helps to expand the labelled dataset.  

The objective of this study was to use the spectral properties of plants in the visible 

wavelengths to develop colour indices for enhancing primordial features in canopies and 

use them to infer variation in actual stem number. The study also tested the use of colour 

indices for developing an automatic labelling algorithm for generating a training dataset for 

transfer learning using  Faster Regions with Convolutional Neural Network” (FRCNN) to 

generate a robust potato meristem detector for inferring variations in stem number.  

4.2 Materials and Methods 

4.2.1 Feature Engineering: Development of Colour Indices 

4.2.1.1 Data Acquisition 

Development and evaluation of colour indices was conducted using potato canopy imagery 

collected from Harper Adams University, Shropshire, England (52°46'26.8"N, 2°25'48.9"W) 

on a dark brown stone-less sandy loam soil. The images were collected from Amora and 

Maris Piper varieties at 91 and 50 days after planting respectively as shown in Table 14.  
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Table 14: Specifications of Unmanned Aerial Vehicle cameras and crop stage used in the 

study 

Location Camera Description (Alias) Variety DAP  
Colour Index Development 

 

HAU, 
Shropshire, 
England 

DJITM Mavic Air UAV equipped with a  1/2.3-inch 
CMOS sensor producing 12 MP still images at 88° 
FOV (Mavic) 

Amora 91 

HAU, 
Shropshire, 
England 

DJITM Inspire equipped with a Zenmuse X3 Camera 
equipped with 1/2.3-inch CMOS sensor producing 
12.4 MP still images at 90° FOV (Inspire) 

Amora 91 

HAU, 
Shropshire, 
England 

3DR Solo UAV mounted with a MapirTM Survey 3N 
Camera with a Sony ExmorTM R IMX117 sensor, 
f/3.0 Aperture and 41° FOV (Mapir) 

Amora 91 

HAU, 
Shropshire, 
England 

3DR Solo UAV mounted with a GoProTM Hero 3+ 
Black Edition camera equipped with a 1/2.3-inch 
sensor with 12 MP and a fisheye lens with a 94.4° 
FOV (GoPro) 

Maris Piper 50 

 
Model Training Data 

  

HAU, 
Shropshire, 
England 

Phantom 4 pro UAV equipped with a Hasselblad L1D-
20c aerial camera with a 1 inch CMOS sensor 
producing 20 MP still images at 70° FOV 

Maris Piper 48 

HAU, 
Shropshire, 
England 

Phantom 4 pro UAV equipped with a Hasselblad L1D-
20c aerial camera with a 1 inch CMOS sensor 
producing 20 MP still images at 70° FOV 

Pentland 
Dell 

48 

HAU, 
Shropshire, 
England 

Phantom 4 pro UAV equipped with a Hasselblad L1D-
20c aerial camera with a 1 inch CMOS sensor 
producing 20 MP still images at 70° FOV 

Amora 82 

 
Model Testing Data 

  

Shawbury, 
Shropshire 

Mavic Air UAV equipped with a 1/2.3-inch CMOS 
sensor producing 12 MP still images at 88° FOV at 20 
m attitude. 

45 different 
varieties 
(see 
Appendix B) 

52 

MP=Mega pixels. CMOS = complementary metal-oxide-semiconductor. FOV = Field of View, 

DJI = Dà-Jiāng InnovationsTM, Shenzhen, China. HAU = Harper Adams University, DAP = Days 

after planting. 

Four different cameras, with varying sensor sizes and resolutions were used to generate 

variable sensor sharpness and colour resolving power. This enabled evaluation of the ability 

of the colour indices to distinguish meristem and old leaf pixels at different sensor 
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sharpness and colour resolving powers so as to select the indices with the most consistent 

performance across sensors. The crops were grown using standard UK commercial practices 

for all inputs. For the Amora variety, the aerial images were captured with 4 different visible 

light (Red, Green and Blue) sensors on UAV systems as outlined in Table 14. The Maris Piper 

crop was added to increase variation in the dataset as well as capture soil background 

because the canopy had not fully consolidated to cover the soil. Additionally, the Maris 

Piper images were collected on a day where the field was partially irrigated, providing the 

option of sampling pixels from both dry and wet soil. The captured images were manually 

evaluated to exclude pictures with distortion or blur due to UAV speed and a total of 5 

images were selected from each camera, resulting in 20 images from which colour indices 

were evaluated.  

All image processing was done using MatlabTM R2020a. From each image, pixels from 

Meristems, Mature Leaves, wet Soil and Dry Soil features were manually selected, and 

reflectance values for Red, Green and Blue were extracted. For each canopy feature, 

grayscale values were calculated from all selected pixels and the first 25 pixels from either 

side of the mean were selected to create 50 pixels per feature per camera. The final dataset 

for the evaluation of colour indices therefore contained 500 labelled data points of features 

with their Red, Green and Blue values.  

4.2.1.2 Visible Light Colour Index Selection 

Several colour indices were evaluated, with inclusion based on a literature search of widely 

used visible light spectrum indices as shown in Table 15. To provide context, Figure 21 

shows an aerial view of a typical potato plant as well as how the growing tips of stems are 

expressed. 
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Figure 21: An aerial view of a typical potato plant (left) with labelled locations of stem 

growing tips that a vegetation index or object detection model are expected to elucidate 

(right) 

 The ExG is most widely used for segmenting vegetation against soil background, however 

there is no publicly available evaluation of its potential for differentiating leaf age, health or 

stress. Other indices included the Excess Red (ExR) Index for automatic segmentation of 

vegetation from soils, the difference between the Excess Green and Excess Red (xGxR), the 

Colour Index of Vegetation Extraction (CIVE) and the Excess Blue index (ExB), which is 

analogous to the ExR index. The Normalized Difference Green Redness index (NDGR), 

normally used for enhancing the contrast between red backgrounds and vegetation was also 

considered.  

Following the spectral reflectance properties of meristematic leaves described by Gates et 

al. (1965), it was hypothesized that the difference between Blue and Red, and Blue and 

Green  reflectance at the pixel level would have the highest potential for maximizing 

contrast between meristems and older leaves. It was expected that meristematic pixels 

would reflect more Red than Blue while mature leaves would reverse this order due to 

darkening of the leaf as chlorophyll accumulated. Due to the darker hue of soil, it was 

assumed that soil pixels would exhibit negligible differences in reflectance among the three 

light bands. Two novel indices were therefore derived based on these premises. The Red to 

Blue difference was plotted against the Green to Blue difference using all the selected pixels 

from section 4.2.1.1 as data points. 
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 Table 15: Descriptions and functions of popularly cited and custom colour indices based on 

standard Red, Green and Blue bands. 

Index Name Formula Source 

Excess Green 𝐸𝑥𝐺 = 2𝐺 − 𝑅 − 𝐵  Woebbecke et al. 

(1995) 

Excess Red 𝐸𝑥𝑅 = 1.4𝑅 − 𝐺  Meyer and Neto 

(2008) 

Excess Green minus 

Excess Red 

𝐸𝑥𝐺 − 𝐸𝑥𝑅 = 3𝐺 − 2.4𝑅 − 𝐵   Meyer and Neto 

(2008) 

Colour Index for 

Vegetation 

Extraction 

𝐶𝐼𝑉𝐸 = 0.441𝑅 − 0.811𝐺 + 0.385𝐵 +

18.78745  

Kataoka et al. 

(2003) 

Excess Blue 𝐸𝑥𝐵 = 1.4𝐵 − 𝐺  Guijarro et al. 

(2011) 

Normalized 

Difference Green 

Index 

𝑁𝐷𝐺𝑅 =
R−G

R+G
  Bannari et al. 

(1995) 

Cumulative Blue 

Difference Index 

𝐶𝐵𝐷𝐼 = 𝑅 + 𝐺 − 2𝐵  Generated in this 

study 

Blue Difference 

Norm Index 

𝐵𝐷𝑁𝐼 = √(𝑅 − 𝐵)2 + (𝐺 − 𝐵)2  Generated in this 

study 

 

Visual observations showed that the Manhattan Distance or Euclidian Norm of each point as 

a vector from the Cartesian origin would provide an index that maximizes the difference 

between meristems and non-meristems. These two distances were therefore simplified into 

linear expressions, with the Manhattan distance termed as the Cumulative Blue Difference 

Index (CBDI) and the Euclidian Norm termed as the Blue Difference Norm Index (BDNI). 
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All colour indices were calculated for all pixel features.  The resulting dataset was comprised 

of pixels as observations, the four features as factors and the 8 colour indices as continuous 

independent variates. Differences in means from sensors which only contained Meristem 

and Leaf features were analysed using the T-Test while data from the GoPro sensor, which 

contained dry and wet soil features apart from the canopy vegetation features, was 

analysed by ANOVA using R version 4.0.2 (R Core Team, 2020) adopting a Completely 

Randomized Design. Means were compared using Fisher’s unprotected Least Significant 

Difference. The colour indices with significant highest differences in index value between 

meristematic and other features were selected for further analysis. 

Following selection of colour indices, an algorithm was designed to estimate the number of 

stems in an image using MatlabTM R2020a. Briefly, the model consisted of (1) K-means 

clustering for segmenting the image into foreground pixels of interest and background pixels 

and (2) establishing an objective process for consolidating fragmented pixels of leaflets into 

single meristem units. These two components were used to create and test a feature-

extraction and object detection process as illustrated in Figure 22. 
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Figure 22: Flow chart of the image analysis algorithm for generating meristem objects and 

infering stem number 
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4.2.2 Image Segmentation using k-Means Clustering 

Both Otsu-based and adaptive threshold methods have been extensively reported in 

literature for green vegetation segmentation, but they perform poorly in images where the 

frequency of target and non-target pixels does not result in a bi-modal distribution of 

intensities (Yang et al., 2012). The growing tips constitute a small percentage of the image 

area in comparison to the rest of the canopy and non-canopy features. Consequently, 

intensity histograms from indices that maximize the reflectance of meristems against all 

other features like the CBDI and BDNI are expected to follow an exponential decay, which 

renders Otsu-based threshold selection unreliable for effective segmentation.  

Since the images predominantly contained 3 object classes (i.e. Soil, and the non-

meristematic canopy component as background and the meristems as the foreground), k-

means clustering with three means was applied as the most appropriate method for 

clustering the three classes and segmenting the foreground without computation of a 

threshold. Using k-means clustering for segmentation is effective to separate object classes 

by minimizing the intra-class squared distance (Hartigan & Wong, 1979), and is widely 

applied in foreground segmentation in canopy images collected from UAVs and remote 

sensing systems (Chen et al., 2019; Cinat et al., 2019; Sun et al., 2019).  Accordingly, the 

pixel with the maximum greyscale intensity in each image was identified, then k-means 

clustering was performed on each image and the cluster containing the identified pixel was 

chosen to represent the meristems. The image was then binarized with the selected cluster 

as foreground and all other clusters as background. 

4.2.3 Noise Reduction and Final Bounding Box Generation 

Due to the compound nature of potato leaves, the k-means-based segmentation produced 

unconsolidated meristem objects. Therefore, it was necessary to consolidate unconnected 

meristematic pixels that belonged to the same stem to minimize the chances of double-

counting, while ensuring that meristems belonging to adjacent stems were not wrongly 

attributed. Morphological operations like erosion or dilation have the risk of consolidating 

some independent but proximal objects in a binary image (Pesaresi & Benediktsson, 2001). 

To avoid this, a custom noise reduction technique was created by shrinking every binary 

object in the image to its centroid pixel, followed by a pixel-wise iterative range search to 

index all other pixels located within a Euclidian distance that corresponded to the average 
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size of a stem in the image. The average size of a stem at the plot level was estimated by 

calculating the average number of pixels per foreground object in each binary image. As a 

result, all pixels located in close proximity to each other were indexed together and 

considered to originate from the same primordia, then joined together. Pixels that were 

separated by a distance more than the estimated average stem size were not connected and 

constituted separate instances of a meristem. The number of connected components was 

then used as an approximation of the number of stems in the image and a minimum 

bounding box was generated to approximate the location and size of each stem, signalling 

the end of the algorithm. The flow chart of the algorithm was as illustrated in Figure 22. 

4.2.4 Development of a Transfer Learning Model 

An aerial survey with a UAV was conducted at Harper Adams University on 09th June 2020 to 

develop a model training dataset of images images collected at 15 m altitude using a 

Phantom 4 pro UAV as specified in Table 14. Varieties covered in the survey were Maris 

Piper (0.5 ha) and Pentland Dell (0.5 ha) at 48 days after planting and Amora (9.4 ha) at 82 

days after planting. The images were then cropped into 500 images of 500 pixels wide and 

1500 pixels long then processed using the developed algorithm to generate bounding boxes 

around proposed potato meristems. The generated bounding for each of the 500 images 

were inspected and corrected manually by deleting erroneous detections and adjusting the 

extent of each valid box to fit the extent to which a human would label the data. Wu et al. 

(2020) emphasize on the computational constraint of training FRCNN object detectors from 

large UAV images, in their case 5472 X 3648 pixels, which necessitated the cropping of their 

images to 1000 X 800 pixels for optimized computation. The sensor used in this study 

produced 5472 X 3648 pixels, which were cropped to 1500 X 500 pixels to approximate the 

size of each plot in a compiled test dataset. All generated bounding boxes were stored as 

pseudo-labels to create a training dataset for deep learning with a CNN.  

Fuentes et al. (2017) tested the Visual Geometry Group’s (VGG-16) CNN (Simonyan & 

Zisserman, 2015) against deeper residual networks in the similar task of deep feature 

extraction of disease-caused leaf colour changes in tomatoes and found that the VGG-16 

performed better than the deeper networks with up to 83% mean average precision. To 

keep the number of network backbone layers minimal for producing the simplest model 

with faster training times, A FRCNN model (S. Ren et al., 2015) with the VGG-16 network 
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backbone and ImageNet weights was chosen. FRCNN is a unified framework that learns an 

object region proposal network from a CNN feature map, classifies each proposed region 

and localizes the class of the object within the region with the introduction of anchor boxes, 

from which object bounding boxes are learnt and refined by regression. To convert a VGG-

16 CNN into a FRCNN object detector, a region proposal network was trained on the final 

convolutional feature map and the last max pooling layer was replaced by an ROI-max-

pooling layer after which FRCNN’s classification and box regression layers were added to 

achieve object detection and localization. The training was conducted on an Nvidia GeForce 

GTX 1070 GPU with 8 GB Video RAM for 11 hours. The model was trained with a fixed 

learning rate of 0.0001, a single image mini batch size and 48 anchor boxes. The anchor 

boxes used in this study were predetermined iteratively by estimating an increasing number 

of anchor boxes and their sizes with each iteration, then checking their IoU with the ground 

truth data using the estimateAnchorBoxes function in MatlabTM R2020a. The final number 

and size of anchor boxes was chosen by observing the asymptote of the scatter plot of the 

determined IoU against the number of anchor boxes. Loss was optimized using the 

stochastic gradient descent with 0.95 momentum. The model converged after 50000 

iterations in 100 epochs. The flow chart of the training pipeline is as illustrated in Figure 23. 
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Figure 23: Flow chart of the Faster R-CNN algorithm for training a potato meristem object 

detector 
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4.2.5 Model Testing 

4.2.5.1 Data Acquisition 

 

Figure 24: Aerial image of the testing site for the image analysis and convolutional neural 

network algorithms 

The traditional image analysis algorithm and the deep learning model were tested for 

performance accuracy using a testing dataset of images collected from 45 potato varieties 

(see Appendix B for a list of the varieties) grown at Eaton Upon Tern Runway (Figure 24), 
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Shawbury, Shropshire, England (52°48'19.3"N, 2°30'41.8"W)  on a Clayey Loam soil. The 

potato varieties came from the four determinacy classifications (Group one to four) and 

some varieties were non-classified by determinacy.  Twenty Seven of the 45 varieties were 

drawn from the top 50 varieties grown in the UK in 2019 in terms of area planted. The 

varieties acted as a source of variation in stem numbers per unit area and canopy colour 

intensity. Differential performance between varieties was not considered in order to 

generalize model accuracy across varieties. The 45 varieties were planted on 29/04/2019, 

uniformly managed throughout the season and harvested on 10/09/2019. The ground-truth 

number of above ground stems was manually determined on 10/09/2019 before harvest. 

The number of visible meristems on top of the canopy was also manually counted. To create 

the model testing image dataset, two adjacent rows of 5 metres each per variety were 

imaged on 20/06/2019 at 52 days after planting at 20 m altitude using a Mavic Air UAV as 

specified in Table 14. 

4.2.5.2 Image Processing and Data analysis 

The aerial images were cropped manually around each of the 45 varieties plots to create an 

image for each plot for analysis then bounding box labels were manually defined for all 

meristems in each cropped image using MatlabTM R2020a’s “image labeller” application. For 

each image in the test set, meristem counts were generated using the image analysis 

algorithm and the FRCNN model then compared to the manually counted number of 

meristems. Bounding boxes were generated from the two predictive models. For each 

image representing a plot, the bounding boxes for the ground truth, FRCNN detections and 

image analysis detections were converted into binary masks then confusion matrices were 

computed for the two detection models against the ground truth. The rates of true positives 

(TP) and false positives (FP) were computed for each of the 45 plots from confusion 

matrices. From these metrics, classification precision, as a measure of model performance, 

was computed as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 …………………………………………………………………..… (16) 

Precision was chosen over Recall and F1-score metrics because the image analysis approach 

was based on the detection of minor colour aberrations at the apex of the plant. This meant 

that bounding boxes for the image analysis approach were expected to be smaller than the 



126 

 

human-verified ground truth where shape features that distinguish a meristem from older 

leaves were identified and the bounding boxes expanded. This was projected to cause a high 

rate of false negatives which would penalize Recall and subsequent F1-scores and therefore, 

the precision metric was used. The most important output of the model for practical 

decision support is the detection of the presence of a meristem for calculating stem density, 

while its size and extent are secondary considerations. Furthermore, the Intersection over 

Union (IoU) was calculated as follows:  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑂𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 =
𝐵1∩𝐵2

𝐵1∪𝐵2
 ……………………………………………………………………….……… (17) 

Where B1 represents the ground truth and B2 represents the predicted bounding boxes from 

the two models. 

The final dataset contained the variety, breeder, the number of manually counted above 

ground stems, number of manually counted meristems, and the number of meristems 

predicted by the image analysis and FRCNN approaches. Observed vs Predicted plots were 

plotted for each prediction against the ground truth data to examine the residuals then the 

Root Mean Square Error (RMSE) was calculated for each model as follows: 

𝑅𝑀𝑆𝐸 =  √∑
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)2

𝑛
𝑛
𝑖=1  …………………..………………………………………………..…. (18) 

The RMSE was divided by the mean of the observed stem or meristem counts to calculate 

the normalized RMSE (nRMSE). 

4.3 Results 

4.3.1 Feature Engineering and Selection of Appropriate Indices 

When the difference between Green and Blue light was plotted against the difference 

between Red and Blue light, grouped by the pixel source, four distinct clusters were visually 

discernible in Cartesian space. The data points of the meristems clustered in the first 

quadrant, the mature leaf data points clustered in the second quadrant while the two soil 

sources clustered near the origin (Figure 25). Upon visual assessment (Figure 25), the 

meristem data points were clustered at the largest Euclidian distance from the origin, 

followed by mature leaves. From this assessment, the CBDI and BDNI were considered to 

have potential to represent the overall variation linearly and guaranteeing that the 
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meristematic pixels would be at the maxima of this variation’s range, therefore enabling a 

predictable threshold selection. The CBDI and BDNI were calculated and compared with 

established RGB-based colour indices.  

 

Figure 25: The difference between Green and Blue colour plotted against the difference 

between Red and Blue colour in pixels selected from four prevalent features in a potato 

canopy 

All the colour indices exhibited significant statistical differences between pixels from 

meristems and older leaves in mean intensity values (P<0.05), a trend sustained across all 

sensor types except for the ExR in the Mapir camera (Table 16). This suggests that the 

features of interest occur in exclusive quantiles of the range of each index, and therefore a 

k-means clustering approach would adequately segment the image into meristems and 

background, eliminating the need for determination of a subjective threshold. To maximize 

the chances of accurate segmentation, it was necessary to select colour indices that 

maximize the value of the meristematic pixels while maintaining a large separation with all 

other features. To achieve this, the separation between the maximum and minimum 

quantile of mature leaves and meristems was evaluated and the percentage overlap was 

calculated, with the aim of selecting the colour index with the largest difference between 

the values of meristem and non-meristem features.  
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Figure 26: Examples of the blue difference normalized index (middle) and the cumulative 

blue difference index (right) applied to an aerial image of a growing potato crop (left) 

Figure 26 shows examples of the CBDI and BDNI applied to a potato canopy image. Of all the 

colour indices, the BDNI (Figure 27-a) and CBDI (Figure 27-b) had the most consistent 

maximization of the index values for meristematic pixels, with distinct visual separation 

between the targeted and background features in boxplots of the indices. Boxplots of ExG, 

(Figure 27-c) and CIVE (Figure 27-d) showed an overlap of index values between the mature 

leaves and meristems. The minimum quantiles of meristematic pixels were consistently 

higher than the maximum quantiles of the mature leaves in only the CBDI and BDNI (Table 

16). The opposite trend was consistently observed in the ExB, where the meristematic pixels 

had negative values due to a Blue colour deficit while the soils and mature leaves had excess 

Blue, resulting in a positive index, except in the Mavic and Mapir images. Unlike the EXG-ExR 

(Figure 27-e), NDGR (Figure 27-f) ExR (Figure 27-g), indices, the ExB index (Figure 27-h) 

achieved a linear positioning of features that would enable clustering. However, there were 

overlaps in the index values of meristem and mature leaf features from images obtained 

with all cameras except the GoPro, with the Inspire having a 28% overlap (Table 16).  

As illustrated in Table 16, the performance of the indices was consistent across camera type 

used to collect the data. Index values of the features of interest overlapped in 6 out of 8 

indices in images taken with the Mapir Camera. The Mavic, Inspire and GoPro cameras had 

overlaps in five, four and two indices respectively. The ExG index consistently showed 

overlapping in all the cameras while the CBDI and BDNI indices only overlapped in the Mapir 

camera images. Based on this analysis, the CBDI and BDNI were chosen for use in the k-

means clustering.  
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In all further images, the two indices where calculated at each pixel and the resulting images 

normalized to 8-bit range then the two indices were combined into a single channel by 

averaging. The resultant grayscale image was then used for k-means clustering and 

subsequent stem count generation and bounding box approximation for both the image 

analysis and FRCNN approaches.

 

Figure 27: Index values of Meristems, Leaves, Dry soil and Wet soil using eight colour indices, 
from images taken before canopy consolidation of partially irrigated Sandy Loam soil. a - 
Blue Difference Normalized Index, b - Cumulative Blue Difference Index, c - Excess Green 
minus Excess Red Index, f - Normalized Difference Green Redness Index, g - Excess Red, h - 
Excess Blue Index 
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Table 16: Mean (and standard deviations) of  indices calculated from the pixels of Leaves, Meristems, Wet soil and Dry soil using four cameras 

Cameraa Feature BDNI CBDI CIVE ExB ExG xGxR ExR NDGRc 

GoPro Leaf 40.3 (2.7) 12.3 (11.7) -15.6 (2.3) 19.8 (9.8) 87.8 (5.6) 97.5 (11.2) -9.7 (7.6) -20 (3.0) 

GoPro Meristem 82.1 (17.8) 115.6 (25.2) -6.7 (5.6) -32.1(13.0) 70.2 (14.6) 27.2 (15.8) 42.9 (8.9) -3.0 (0.2) 

GoPro Wet Soil 4.9 (1.9) -10.0 (3.2) 23.6 (1.0) 56.9 (5.9) -8.3 (2.1) 41.1 (9.2) 33.6 (7.7) 1.0 (0.2) 

GoPro Dry Soil 7.4 (2.4) 5.2 (4.3) 21.8 (1.6) 39.1 (5.8) -1.6 (3.8) -64.3 (9.0) 62.7 (5.9) 1.0 (0.3) 

GoPro Gapb 0.3*** 1.4*** -3.0*** 0.1*** -3.0*** 0.1*** 2.5*** 27*** 

Inspire Leaf 33.5 (4.9) -16.5 (4.9) -3.1 (7.1) 19.3 (4.8) 54.0 (17.5) 75.8 (26.6) -21.5 (10.3) -3 .0(1.0) 

Inspire Meristem 87.8 (14.7) 115.4 (22.6) -28.7 (5.2) -28.2 (16.4) 125.0 (13.0) 103.9 (19.8) 21.2 (11.1) -1.0 (0.4) 

Inspire Gapb 1.0*** 1.5*** -1.0*** -2.8*** -0.4*** -7.0*** 0.1*** 0.1*** 

Mapir Leaf 81.2 (17.9) 114.3 (25.6) -6.6 (5.6) -31.7 (13.2) 69.9 (14.7) 27.5 (15.6) 42.4 (8.4)NS -3.0 (0.02) 

Mapir Meristem 150.1 (16.1) 211.20 (22.5) -31.9 (8.3) -91.4 (15.9) 135.6 (21.04) 93.2 (27.7) 42.41 (9.6)NS -0.6 (0.02) 

Mapir Gapb -1.0*** -1.0*** 1.9*** 2.4*** -1.6*** -2.1*** -0.1 -1.0*** 

Mavic Leaf 50 (5.5) 43.20 (10.9) -23.6 (3.9) -14.9 (14.6) 107.2 (9.5) 131.8 (17.9) -24.6 (12.0) -3.0 (0.7) 

Mavic Meristem 127.4 (16.6) 170.40 (24.3) -47.5 (7.7) -77.5 (18.8) 171.80 (17.9) 170.5 (28.3) 1.4 (13.2) -2.0 (0.3) 

Mavic Gapb 1.5*** 2.1*** -0.1*** -0.8*** -0.2*** -4.5*** -5.1*** 28*** 

a = Camera alias, unless otherwise stated, there was significant difference in mean index values between meristem and non-meristem features 
in each camera (P<0.05). Standard deviations from each mean are expressed in parentheses. b = the interval between the minimum value of 
meristems and the maximum value of a mature leaf, expressed as a proportion of the range x 10-1 (x 10-2 for NDGR), negative values indicate 
that the ranges of the two features overlap. c = NDGR x 10-2. NS=No significant difference between meristem and non-meristem features. CBDI 
= Cumulative Blue Difference Index, ExG = Excess Green Index, NDGR = Normalized Difference Green Redness, ExR = Excess Red, ExB = Excess 
Blue, xGxR = Excess Blue to Excess Red difference, CIVE = Colour Index of Vegetation Extraction, BDNI = Blue Difference Normalized Index. 
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4.3.2 Model Testing 

4.3.2.1 Mean Stem Counts 

Table 17: Performance of image analysis and Convolutional Neural Network approaches in 

the enumeration of meristems in all the varieties. The varieties are grouped into 

determinancy types for presentation purposes and “Actual Stem Number” information is 

included to illustrate the difference between meristem and stem counts. 

Variety 

Group 

Actual 

Meristem 

Number 

Actual Stem 

Number 

Image Analysis 

Meristem 

Prediction 

CNN Meristem 

Prediction 

1 77.5 (2.1) 40.5 (3.5) 82.0 (2.8) 70.0 (2.8) 

2 82.6 (12.2) 50.3 (13.2) 102.0 (32.1) 75.0 (8.5) 

3 78.4 (7.9) 47.4 (6.7) 87.1 (22.6) 73.0 (8.0) 

4 67.3 (3.1) 48.7 (5.1) 74.0 (16.1) 67.7 (1.5) 

UGa 81.1 (9.1) 49.3 (11.5) 92.2 (28.2) 75.8 (10.0) 

Grand Mean 79.8 48.7 90.6 74.5 

RMSEmb   24.1 7.3 

nRMSEmb - - 0.3 0.1 

RMSEsc   46.9 26.8 

nRMSEsc 0.7 -  0.9 0.6 

RMSE = Root Mean Square Error. nRMSE = Normalized Root Mean Square Error. a = 

Unknown variety group. b = RMSE or nRMSE with meristem ground truth as the observed 

variable. c = RMSE or nRMSE with manual stem counts as the observed variable 
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Figure 28: Observed vs Predicted of the number of meristems in potato canopies when 

predictions were made using the traditional image analysis approach 

 

Actual main stem counts from the field validation showed that the average number of 

above-ground stems per determinacy group had low variation ranging from 47 to 50 stems 

while there was more variation in the actual number of meristems counted, ranging from 

67.3 in group 4 varieties to 82.6 in group 2 varieties (Table 17).  FRCNN had a better 

predictive accuracy for the total number of meristems (nRMSE=0.09) than the image 

analysis method (nRMSE=0.3). Both FRCNN and image analysis algorithms had low accuracy 

in predicting the actual number of stems in the plot (nRMSE was 0.6 and 0.9 respectively) 

and the same observation was made when manually labelled meristem were compared to 

the manual stem counts (nRMSE = 0.7) as shown in Table 17.  



133 

 

 

 

Figure 29: Observed vs Predicted number of meristems when predictions were made using a 

Convolutional Neural Network-based object detector 

Least squares linear models of the predicted meristem counts against manual meristem 

counts showed an R2 value of 0.57 (Figure 28) and 0.73 (Figure 29) for the image analysis 

method and FRCNN learning method respectively. Additionally, there was a significant 

(P<0.001) relationship between manual counts of main stems and FRCNN meristem 

detections (Figure 30) as well as counts from the image analysis approach (Figure 31).  
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Figure 30: Observed number of stems vs Predicted number of meristems when predictions 

were made using a Convolutional Neural Network 

 

Figure 31: Observed number of stems vs Predicted number of meristems when predictions 

were made using the traditional image analysis approach 
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4.3.2.2 Localization Accuracy 

Table 18: Means and standard deviations (in parentheses) of detection and localization 

performance metrics of the image analysis and Convolutional Neural Network against 

manually labelled meristem data 

  
Ground 

Truth 
Image Analysis 

 
Faster R-CNN 

Group BBa Size  IoUb Prc BBa Size  IoUb Pr BBa Size 

1 

2991.1 

(657.5) 

 
0.4 

(0.3) 

0.2 

(0.2) 

1739.8 

(584.2 )  

0.5 

(0.5) 

0.6 

(0.2) 

3161.1 

(45.2) 

2 

2382.7 

(745.9 ) 

 0.31 

(0.5) 

0.1 

(0.7) 

1253.8 

(222.2)  

0.4 

(0.5) 

0.4 

(0.1) 

3168.9 

(130.6) 

3 

2985.4 

(366.9) 

 0.32 

(0.7) 

0.1 

(0.6 ) 

2468.9 

(304.2)  

0.5 

(0.7) 

0.6 

(0.2) 

3159.0 

(111.4) 

4 

2851.7  

(320.5) 

 0.3 

(0.5 ) 

0.1 

(0.7 ) 

938.8 

(343.7)  

0.4 

(0.3) 

0.6 

(0.1) 

3015.9 

(172.2) 

UGd 

2996.3 

(553.5 ) 

 
0.34 

(0.9) 

0.4 

(0.9) 

2132.6 

(204.9)  

0.5 

(0.5) 

0.6 

(0.1) 

3125.9 

(110.6) 

Mean 2930.2  0.3 0.1 2009.8  0.5 0.6 3129.2 

IQRe 814.4    609.9    159.6 

a = Bounding Box. b = Intersection over Union, standard deviation values are x 10-1. c = 

Precision, standard deviation values are x 10-1. d = Unknown Variety Group. e =Interquartile 

Range  

The image analysis method had a low mean IoU (0.3) and Precision (0.1) compared to the 

FRCNN method (IoU = 0.5, Precision = 0.6) against the ground truth bounding boxes (Table 

18).  The Image Analysis algorithm had an average bounding box size that was closer to the 
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average size of the ground truth boxes than observed in the FRCNN model (Table 18). The 

Inter-quartile Range (IQR) showed that there was more spread in the bounding box 

predictions of the image analysis method than the FRCNN method, which predicted more 

equally sized bounding boxes (IQR =159.6).  

4.4 Discussion 

4.4.1 Feature Engineering and Development of Colour Indices 

Both the CBDI and BDNI indices achieved better classification of the meristematic leaves 

than the other indices compared.   The CBDI and BDNI indices were derived in such a way as 

to take advantage of the theory that plant leaves exhibit variable reflectance of the Blue 

wavelength based on the age of the leaves, and the maximization of index values in 

meristematic features is in line with the projected spectral signature of Gates et al. (1965).  

The Excess Blue index equally agrees with the findings of Gates et al. (1965) as it shows 

sensitivity to the diminished level of Blue light reflectance in meristematic structures, 

leading to lower index values than older leaves and soil.  

In agreement with findings from Woebbecke et al. (1995), The Excess Green index 

adequately separated soils from canopy features. However, the index showed insensitivity 

to the amount of reflected green light between the meristematic structures and leaves, 

though the matured leaves had a higher mean reflectance than the meristems. The range of 

the Excess Green index and all other indices (Figure 27) in meristematic leaves overlaps with 

the range of the matured leaves, reflecting different levels of chlorophyll in meristematic 

leaves as affected by the age of the leaf. This is expected as noted by Gates et al. (1965) that 

a sharp drop in Red reflectance accompanies the continued increase in green reflectance 

with leaf age as proto-chlorophyll is converted to chlorophyll.  

Though potatoes generally contain a larger concentration of the lighter shaded chlorophyll-a 

than chlorophyll-b (Anžlovar et al., 1996), a noticeable difference in Blue reflectance can be 

expected in mature leaves compared to the meristems which still have proto-chlorophyll. 

This is confirmed by Gates et al. (1965) who illustrates a slightly higher reflectance in the 

Blue range from mature leaves than younger leaves in reflectance curves. The CBDI and 
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BDNI achieve better classification of meristematic leaves because they take this Blue light 

reflectance into account in relation to green reflectance.  The difference between these two 

wavelengths is responsible for the high Manhattan distance and Euclidian norm from the 

origin in the meristems (Figure 25). The results also show that the difference between Blue 

and Green reflectance is minimal in soils, showing more reflectance in the Green range than 

the Blue range in dry soils. This is in agreement with soil reflectance curves reported by 

(Huete, 2004) which show a linear increase in reflectance from Blue to Near Infrared. 

(Baumgardner et al., 1986) reported similar curves which consistently show more Red than 

Blue reflectance in soil. The findings for dry soils in this study concur with Baumgardner et 

al. (1986), however, wet soils were found to reflect more Blue light than Red. Huete (2004) 

and Baumgardner et al. (1986) discussed a decrease in reflected energy which makes soils 

appear darker, consistent with the high reflectance of Blue wavelength observed. These 

findings make the CBDI and BDNI ideal as they minimize the index values of soils and mature 

leaves in comparison to meristems. Comparison of the boxplots of the two indices 

additionally shows that the BDNI can be used as a general colour index as it additionally 

separates vegetation from soils, while the overlap between mature leaves and soils in the 

CBDI would make it unsuitable as a general colour index.  

When targeting sparse features that do not show a peak in the feature space’s histogram, 

Otsu-method binarization of an image is known to produce non-satisfactory segmentation. 

K-means segmentation adopted in this study provides an alternative that formulates 

clusters of features based on the variation in the feature space (Yang et al., 2012) rather 

than a subjective segmentation threshold. Where the feature space is defined by the 

Manhattan distances using the CBDI or Euclidian distances in the BDNI, automatic selection 

of a cluster of interest as a basis for binarizing the image is made possible since the 

meristems cluster is bound to occur at the upper quantiles of the histogram.  

4.4.2 Model Testing 

Observed vs predicted plots of the number of meristems in the image analysis and FRCNN 

methods had R2  values of 0.57 and 0.73 respectively. FRCNN has an advantage over image 

analysis with a low nRMSE of 0.09 compared to 0.3 nRMSE observed in the image analysis. 
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With no previous studies on potato stem detection, these results can be benchmarked 

against models that detect variation in leaf colour and shape due to viral leaf yellow 

mottling and crinkling akin to the underdeveloped leaves of growing tips. In this respect, the 

FRCNN performs comparably to findings by Duarte-Carvajalino et al. (2018) where 

convolutional neural networks achieved a maximum of 0.82 R2 value for the detection of 

incidences of Late Blight (Phytophthora infestans) on potato leaves when compared to 

manually labelled ground truth data.  Comparably, (Sugiura et al., 2016) similarly developed 

an image analysis protocol for estimating the severity of late blight with R2 of 0.77. The 

results presented here show that the FRCNN approach is as efficient as other studies that 

aim to detect objects of interest in potato canopies that humans identify based on colour 

and leaf shape. The difference between predicted counts and observed counts in the image 

analysis approach show the need to account for more variation within the image by 

improving the image segmentation and the algorithm’s inclusion criteria of an independent 

stem. Improvements in the image segmentation can be achieved by further feature 

engineering to generate more robust colour indices. Furthermore, although K-means 

clustering and subsequent cluster segmentation overcomes the problems of Otsu-based 

segmentation in non-bimodal data, the hard-coding of cluster number introduces the 

possibility of misclassification of ambiguous pixels, a double-edged sword that caused both 

false positives and false negatives (Kanungo et al., 2002). More in-depth studies into 

possible adaptive threshold selection techniques at the image level are needed to generate 

robust clustering and threshold selection rules to improve accuracy. Differences between 

predictions and observations in the FRCNN model can partially be attributed to the limited 

variation in the training dataset, generated from two potato varieties, against the testing 

dataset which contained 45 varieties with variable canopy characteristics.  

The performance of region-based CNNs is influenced by the adequate determination of the 

number of anchor boxes and their sizes at the training phase (Zhao et al., 2019). The 

irregularity of potato meristems means there needs to be a representative compendium of 

anchor boxes to cover the high variation in ground truth bounding box sizes. In this study, 

the ground truth bounding boxes had a high IQR of 814.38 pixels compared to the predicted 

bounding boxes of the CNN (159.61) and image analysis (609.86) on the test dataset (table 
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17). The CNN model produced regular (equally-sized) but larger bounding boxes than the 

ground truth while the image analysis approach produced smaller bounding boxes than the 

ground truth but were more variably sized, more naturally representing the variation in 

sizes of growing tips. In subsequent studies with the CNN approach, a more exhaustive 

method of anchor box size estimation is warranted, but equally so is the development of the 

model from lower resolution imagery at higher UAV altitude to reduce the ground truth IQR 

of the test dataset and potentially improve the model accuracy, though this comes at a cost 

of more errors in labelling low resolution imagery. These observations signal potential 

improvements to the data collection and hyper-parameter settings which may improve 

model accuracy in future studies. The small bounding boxes in the image analysis approach 

were reflective of the results of k-means clustering on the novel colour indices which were 

highly optimized to maximize values of meristematic pixels against mature leaves. However, 

the high R2 values observed in both models show that there is a significant correlation 

between the predicted and actual meristem counts, as well as actual main stem counts, 

which shows that both models can be used in mapping this variation at field scale, a key 

desire for farmers who seek to vary vine desiccation dates based on stem density to manage 

potato tuber sizes and their distribution at harvest.  

The FRCNN model achieved higher precision (0.56) and mean IoU (0.49) across the variety 

groups compared to the image analysis method (0.13 and 0.33 precision and IoU 

respectively), showing better efficiency at learning the features that a human labeller would 

identify with meristems, as well as the effect of the human-verification and adjustment of 

training labels on the final model. In the absence of potato meristem segmentation studies, 

precision scores were benchmarked against the Potato Virus Y (Polder et al., 2019), whose 

primary symptom is chlorotic foliage akin to the signal being detected by the image analysis 

approach to label stems. Polder et al. (2019) found precision scores between 0.23 and 0.54 

when a fully convolutional network was used to achieve semantic segmentation of Potato 

Virus Y. This is comparable with the performance of the FRCNN approach but outperforms 

the image analysis method. While the image analysis approach also adequately identifies 

the presence or absence of a meristem, the size and centroid of its resultant bounding 

boxes is less consistent since the system is purely based identifying the extent of the colour 
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aberration at the very tip of the youngest leaves and not learning any other advanced 

features as in the FRCNN. As a result, the image analysis approach produces highly variable 

meristem sizes within an image as shown by the high IQR. However, its inclusion in the 

FRCNN pipeline is justified as it speeds up the labelling of a large dataset, allowing a human-

labeller to only correct the computer generated labels. The image analysis method allows 

the generation of initial annotations to guide labellers and train non-expert labellers to 

identify canopy features of interest from which they can simply adjust bounding box extents 

and hence speed up the annotation process. 

For the purposes of deriving a management or phenotyping tool for evaluating variations in 

stem sizes across different stem densities, the establishment of a significant linear 

relationship between predicted stem counts and actual counts is important despite the 

presence of residuals because the linear relationship can be used to model spatial variation 

in stem density at field scale. While Sankaran et al. (2017) reported a predictive model with 

R2 values of 0.83 for modelling plant density variation at emergence using the NDVI, they 

observed that predictive accuracy was lost as the canopy consolidated and they were not 

able to successfully run the prediction after 43 days from emergence. Furthermore, the 

effective unit of plant density in the potatoes is the stem, which can only be evaluated when 

all potential stems have developed, after plant canopy consolidation (Wurr & Morris, 1979). 

The overall 0.73 R2 value in this study’s CNN method gives a level of accuracy that is 

comparable to Sankaran et al. (2017) while offering the desired ability to enumerate the 

preferred unit of plant density, which can be incorporated in vine desiccation decision 

support systems for manipulating tuber size distribution at harvest and in high throughput 

phenotyping. With 40 tubers planted per plot, the actual stem counts found in this study 

mean that the average number of above ground stems per plant (1.21) falls within the 

ranges (1-4.4) reported in literature (Wurr & Morris, 1979). Most plants had one or two 

primary stems due to physiologically young seed tubers, stored below induced dormancy-

breaking temperature. While the meristems represent the termination of both primary and 

secondary stems as well as sympodial branches, it can be noted that the average number of 

meristems per plant (2.01) also falls within the range of the number of main stems per 

potato plant reported in literature (Wurr & Morris, 1979) and further suggests that most 
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plants in this study produced one or two primary stems and one secondary stem. The potato 

main stem always terminates with a meristem in all varieties and a sympodial branch 

continues growth in indeterminate varieties (Almekinders & Struik, 1996). The average 

number of secondary branches per stem reported in literature is minimal ranging from 0.5 

to 0.9 branches per main stem (Vos & Biemond, 1992; Wurr & Morris, 1979). Therefore, 

while the number of meristems does not directly correspond to the number of main stems, 

its density variation across the field is a predictable proxy for stem density variation, which 

is the main desired unit of potato plant density whose determination at field-scale had so 

far been elusive (Wurr & Morris, 1979).  

The number of main stems formed by a potato is largely variable and contingent upon the 

physiological age, plant population density and other agronomic and management factors 

(Knowles and Knowles, 2006). The number of secondary stems formed is also dependant on 

factors that affect apical dominance like inherent determinacy characteristics and frost 

events (Chang et al., 2014). Additionally, differences in growth rates between stems means 

some meristems are occluded from view at the top of the canopy by other leaves, hence 

cannot be captured by UAV. These factors all contribute to the residuals between the 

number of actual main stems and the number of meristems detected at the top of the 

canopy. The results of this study suggest that the number of meristems visible at the top of 

the canopy can be predicted using a CNN with low residuals (nRMSE = 0.09). Predicting the 

actual number of stems from the meristems proved to be less accurate due to the influence 

of secondary stems that also terminated in a meristem. However, this study established that 

the predicted number of meristems at the top of the canopy explains a large portion of the 

variation in the actual number of stems, providing a statistical route for generating 2D 

density maps of the variation in stem density from UAV, using meristem density as a proxy. 

Future studies must focus on generating methods for distinguishing a meristem originating 

from a main stem from those originating from branches and secondary stems. Unlike the 

physiologically young seed used in this study, temperature-primed physiologically old seed 

is mostly used in commercial production, with low apical dominance, forming multiple 

primary main stems at emergence and only branching late in the season after flowering 

(Knowles and Knowles, 2006). To partially solve the problem of secondary stems, it is 
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therefore suggested that the meristem detection models should be used before significant 

branching occurs. Future studies must also focus on determining the optimum timing of 

imagery for minimizing the probability of detecting secondary meristems. 

4.5 Conclusion 

This study represents the first attempt to enumerate potato stem number after canopy 

consolidation using UAV based sensors. The prospect of accurately mapping variation in 

stem density across a field enables the possibility of using precision agriculture techniques 

to manipulate potato tuber size distribution through variable harvesting dates and other in-

season management practices. This study provides evidence that deep learning and image 

analysis approaches can be used to accurately enumerate potato meristems and estimate 

stem density variation in 45 UK potato varieties. Based on the spectral properties of plants, 

the colour indices developed in this study should also have potential applicability in 

mapping physiological maturity and leaf discolouration due to biotic or abiotic stress. More 

studies to test the wider applicability of these indices are therefore recommended. The 

study has also demonstrated the validity of automated labelling for generating a large 

dataset of pseudo-labelled ground truth data which can be more rapidly quality-checked 

and adjusted by a human labeller then used to train deep learning models that learn the 

features of interest and achieve high IoU with manually labelled test data.  
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CHAPTER 5 - Mapping Potato Plant Density Variation Using Deep Learning and Unmanned 

Aerial Vehicles for Accurate Predictions of Yield 

Abstract 

In Potato (Solanum tuberosum) production, the spatial mean and variance in the number of 

tubers harvested is related to the plant population. Maps of the spatial variation in plant 

density are therefore important for evaluating the efficiency of planting operations and 

predicting yield. Computer vision has been proposed to enumerate plant numbers using 

images from Unmanned Aerial Vehicles (UAV) but inaccurate predictions in images of 

merged canopies remains a challenge, for which neural network architectures with difficult 

annotation-requirements are increasingly proposed in the search for the “perfect” model. 

Some research has been done on individual potato plant bounding box prediction but there 

is currently no information on the spatial structure of plant density that these models may 

reveal and its relationship with potato yield quality attributes. In this study, the Faster 

Region-based Convolutional Neural Network (FRCNN) framework was used to produce a 

model with which to estimate plant densities across a UAV orthomosaic. Using aerial images 

collected from potatoes at 40 days after planting, a FRCNN model was trained to an average 

precision (aP) of 0.78 on unseen testing data. The model was then used to generate 

predictions on quadrats of a grid imposed on orthomosaic rasters captured at 14 and 18 

days after emergence. After spatially interpolating the plant densities, the resultant surfaces 

were highly correlated to manually-determined plant density (R2=0.80). Furthermore, the 

predicted plant densities were correlated with tuber number (r = 0.54 at Buttery Hill; r = 

0.53 at Horse Foxhole) and marketable tuber weight per plant (r = -0.57 at Buttery Hill; r = -

0.56 at Horse Foxhole). There was also a strong link between variation in early-season 

Normalized Difference Vegetation Index values to variations in plant density predicted by 

the FRCNN model (r = 0.61). These results show that accurate interpolation of the variation 

in plant density can be constructed from UAV imagery with high correlation to important 

yield components, despite the loss of accuracy of FRCNN models in images containing 

partially merged canopies.  
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5.1 Introduction 

Potato (Solanum tuberosum) plant density is a basic measurement of the population that 

has been linked to significant differences in yield and tuber size distribution (Allen & Wurr, 

1992; Arsenault et al., 2001; N. R. Knowles & Knowles, 2006; Love & Thompson-Johns, 

1999). Increasing plant spacing significantly reduces the plant population and subsequently 

decreases yield (Bohl et al., 2011). Potatoes form multiple main stems per planted tuber, 

which are considered a more representative unit of plant population due to their 

established relation to tuber number at harvest (Allen & Wurr, 1992). However, the 

practical difficulties in accurate enumeration of potato stems make it more practical for 

farmers to use the weight of tubers planted per unit area as a standard of seed rate that 

directly relates to plant density rather than stem density (Allen & Wurr, 1992). This requires 

farmers to determine the effective plant density in the field in order to evaluate the 

efficiency of planting operations, seed germination rates, and to accordingly adjust yield 

expectations.  Currently, farmers predominantly evaluate plant density using visual counts 

of emerged plants during the establishment phase of crop development (Sankaran et al., 

2017), which is unreliable due to lack of reproducibility and is impractical in large fields. 

Reliable, efficient and reproducible methods of plant density determination are therefore an 

important need in precision agriculture.  

A potential solution for estimation of potato plant density can be obtained by leveraging 

advances in computer vision and aerial image photogrammetry. Unmanned Aerial Vehicles 

(UAV) fitted with imaging sensors provide a platform for remote sensing of canopy 

development with the potential to determine variation in plant density for precision 

agriculture applications. A commonly cited application of UAVs in agriculture is the 

generation of spatial variation maps using vegetation indices derived from multispectral 

camera data. These maps may be used to infer vegetation health, utilizing known spectral 

responses of vegetation to plant health and molecular constitution (Gates et al., 1965). 

Classification algorithms applied at spatio-temporal scales are useful for the evaluation of 

vegetation cover characteristics, a proxy to crop growth rate and leaf area index that is 

required in most yield forecasting crop models (Mendes dos Santos et al., 2020). Apart from 
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pixel-level image analysis applications, there is considerable interest in using UAVs for non-

destructive and non-invasive evaluation of properties of interest within crop canopies such 

as plant heights with light detection and ranging, instances of diseases or pests and plant 

population counts (Franceschini et al., 2019; S. Jin et al., 2020).   

Several computer vision algorithms have been proposed for determining plant counts from 

aerial images of different crops using traditional image analysis and machine learning 

approaches. The most prevalent approach involves feature extraction using traditional 

image analysis followed by a machine learning approach for predicting image class labels 

from extracted features. Several variations of this two-step approach have been used to 

produce plant-counting models in wheat (Fernandez‐Gallego et al., 2020), Rapeseed (Zhao 

et al., 2018), potatoes (B. Li et al., 2019) and other crops. In weed-free fields, images of 

emerged plants before canopy consolidation consist mostly of green pixels of the objects of 

interest against a background dominated by soil (Machefer et al., 2020). This dichotomy is 

utilized in the feature extraction step to classify and consolidate connected foreground 

pixels as objects of interest using reflectance values of the pixels. Colour indices are often 

used to generate two-dimensional grayscale images from truecolor (RGB) or multispectral 

images. Generation of a binary mask representing the dichotomy between the foreground 

and background often involves the selection of a threshold that is either learned from the 

image using the Otsu algorithm (B. Li et al., 2019) or subjectively selected (Sankaran et al., 

2017). While these approaches return satisfactory binary masks in some situations, 

subjective selection of a threshold is clearly not expected to be robust in all environments 

and the Otsu algorithm becomes sub-optimal when vegetation indices produce multi-modal 

frequency histograms (X. Yang et al., 2012).  Subsequent feature extraction and regression 

or classification modelling therefore becomes dependent on data pre-processing methods 

deployed to clean the binary mask, impacting repeatability.  

Following up on the traditional computer vision approach by Li et al. (2019) Machefer et al. 

(2020) trained a Mask R-CNN model, predicting potato and lettuce instances using bounding 

boxes and sizing the extent of each instance with a mask. This overcame the need for 

manual feature extraction and demonstrated the superiority of deep learning over the 
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traditional approach. Dijkstra et al. (2019) also developed a framework based on a fully 

convolutional neural network to count potato plants in merged canopies. However, both the 

Mask R-CNN (Machefer et al., 2020) and the two-step computer vision (B. Li et al., 2019) 

approaches suffer from a loss of accuracy in distinguishing overlapping plants. Homogeneity 

in potato plants, and the difficulty of separating individual plant units in merged canopies 

during data annotation makes it difficult to train models that can accurately distinguish 

individual plants after potato canopy consolidation. A potential solution to this problem 

would be to conduct imaging before canopy consolidation. However, potato emergence 

rates vary spatially with soil temperature, disease incidence, and treatments that alter 

apical-dominance at the seed-lot level (Sankaran et al., 2017). Additionally, calcium 

deficiency at the terminal bud can induce the loss of apical dominance, which necessitates 

branching and determines the number of sprouts per tuber, causing a spatial variation in 

canopy growth rates across the field (Jefferies & Lawson, 1991). Variations in planting depth 

also cause variations in the number of days to emergence, with deeper planted tubers 

taking up to a week longer to emerge than shallower planted tubers within a field (Bohl & 

Love, 2005). These factors make it necessary to delay image acquisition, so as to minimize 

the chance of underestimating emergence. 

Dijkstra et al. (2019) report accurate mapping of centroids of plants in merged canopy using 

a custom CentroidNet architecture supported by a fully convolutional network learning the 

centroid origin of leaves in overlapping potato canopies. The premise of this method is that 

potato leaves grow outwardly from the location of the planted tuber, and the model can 

therefore detect the location of a plant by learning the vectors pointing to the centroid of a 

plant object. In merged canopies, this assumption may be violated by the fact that potato 

leaves grow outward from their subtending stem and each stem eventually grows 

independently from its mother tuber (Allen & Wurr, 1992). Therefore, overestimation can 

be expected in multi-stem plants using the CentroidNet. Indeed, Dijkstra et al. (2019) report 

observing false positives due to oddly-shaped plants, which may be primary or secondary 

stems. Evidence suggests that accurate potato plant counting remains an object detection 

problem that is best modelled from UAV data before canopy overlap when individual plants 
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are discernible to data annotators. The practical need for plant counting algorithms to 

farmers is the generation of a plant density map across the field from the detected objects, 

making this primarily an object detection problem, and the accurate pixel-wise 

segmentation problem is secondary. Faster R-CNN (FRCNN), the detection framework on 

top of which Mask R-CNN is built therefore provides an adequate and simplified training 

protocol. Training FRCNN models also requires less hyperparameter tuning requirements 

than MASK-RCNN (Machefer et al., 2020).  

The ultimate goal of plant counting algorithms is to replace the need for manual estimations 

of plant density across a field, which is done by interpolation of manually collected stem 

count data. The accurate production of 2D density maps that represent the spatial variation 

in plant density is therefore more pertinent than fine-grain plant-by-plant accuracy because 

the economic and practical feasibility of site-specific management is contingent upon the 

establishment of a practically manageable range of spatial autocorrelation (Taylor et al., 

2018). Variables that respond to plant density (e.g. yield) are also likely to only be managed 

if they exhibit relatively long-range spatial autocorrelation. Taylor et al. (2018) reported 

large differences in the range of autocorrelation in potato yields from 12 m to 425 m. In 

commercial production, farmers aim to produce uniform plant density across the field and 

any variation is likely to come from factors such as a systematic fault in the planting 

operation, low viability of a batch of seed, or soil-borne factors that affect seed germination 

(Bohl et al., 2011). Such systematic sources of variation are likely to exhibit spatial 

autocorrelation relative to the size of the field. Therefore, plant density maps need to 

capture this spatial structure rather than merely capturing local variation. This provides a 

geostatistical solution to the problem of plant-density determination using computer vision 

and deep learning algorithms in fields with slightly merged canopies. In a large orthomosaic 

of UAV imagery, plant detection can be conducted on a sliding window as suggested by 

(Machefer et al., 2020) then a filtering step can be added post-detection, discarding all 

images containing overlapped plants. This would create a sparse matrix of detections across 

the field from which geostatistical interpolation can be used to re-generate a continuous 

representative 2D density map. The 2D density map can then be related to variation in yield 
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parameters or used to test the utility of other sources of variation like satellite-derived 

early-season NDVI. With the main potato-related papers in this field  focused solely on 

detection (Dijkstra et al., 2019; B. Li et al., 2019; Machefer et al., 2020), this approach has 

not been reported in literature. 

In this chapter, it is demonstrated plant counting in potatoes as a detection problem 

solvable by a FRCNN model without the need for instance segmentation. For the first time, a 

geostatistically interpolated 2D plant density plots were produced, compared to satellite-

derived early-season NDVI density plots and the relationships between the density plots and 

potato yield attributes were evaluated. 

5.2 Methods 

5.2.1 Data capture and Modelling 

Table 19: Summary of the locations, ground sampling distances (GSD) and crop stage of the 

images used in the study. In all instances, the cropped variety was Amora 

Use Field Name Year Coordinates GSD 

(mm) 

Crop Stage 

Model Training H.Foxhole1 2019 52°46'26.94"N  

2°25'49.38"W 

2 cm 10 days after 

emergence 

Model Testing B.Hill2 2020 52°46'22.05"N 

2°25'40.46"W 

2 cm 18 days after 

emergence 

Model Testing H.Foxhole1 2019 52°46'26.94"N  

2°25'49.38"W 

1 cm 14 days after 

emergence 

1 = Horse Foxhole. 2 = Buttery Hill 
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The study site for model development was a commercially planted potato crop (variety 

Amora) planted at Harper Adams University, Shropshire, United Kingdom (Table 19). The 

field was planted on 27th March 2019 at a targeted 25 cm between planting stations. First 

emergence was observed on 18th April 2019, after which a 10-day interval was allowed 

before imaging, allowing the emergence of a sufficient number of plants for annotating a 

training dataset. Consequently, aerial images were captured on 28th April 2019 at 30 m 

altitude using a Mavic Air UAV hosting a 2.54 cm CMOS sensor producing 12MP images with 

an 88° field of view (FOV).  

To ensure separation between model training and testing data sources, the initial image 

acquisition was restricted to a designated sub-section of the field for training the model, 

while the remaining portion of the field was used for validating the model. Thirty images 

were randomly selected from the collected image set and divided into 338 x 304 pixel sub-

images, creating 1000 images for annotation. The images were then manually annotated 

using Matlab’s (MATLAB, 2020) Image Labeller application. With a ground sampling distance 

of 2 cm per pixel, the images contained enough perceptual detail to manually produce 

bounding boxes for plant objects and the earliness of the image acquisition made it possible 

to delineate overlapping plant clusters and place bounding boxes for each distinct plant. 

After a visual inspection of the 1000 training images, 172 were excluded due to blur caused 

by camera movement during image acquisition or if there were no potato plants present 

(because a section of the headland was captured by the UAV). The resulting 828 images 

were partitioned into a training set of 580 and a testing set of 248 images. All generated 

bounding boxes were stored as labels to create a training dataset for transfer learning with 

a CNN.  

Transfer learning was conducted using FRCNN with a VGG-16 network backbone, pre-

trained on the ImageNet dataset (Deng et al., 2009). VGG-16 is an image classification 

convolutional network that takes input of 224x224 RGB images through a sequence of 

convolutional layers with minimal 3 x 3 filters, a fixed 1-pixel stride and max-pooling with a 

stride of 2 (Simonyan and Zisserman 2015). Three fully connected layers follow the 

convolutional layers, with the final fully connected layer containing a number of channels 
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equal to the number of training classes (in this case 2, representing the potato plants and 

background) and followed by a soft-max layer. The FRCNN framework utilizes the VGG-16 

final convolutional feature map to train a region proposal network (RPN) and spatially locate 

the objects within the convolutional feature map. To create a potato plant detector, the 

final convolutional feature map of VGG-16 was used to train a RPN and the last max-pooling 

layer was replaced by an ROI (region of interest) max-pooling layer as proposed by Ren et al. 

(2015)  followed by FRCNN’s classification and regression layers.  The training was 

conducted on an Nvidia GeForce GTX 1070 GPU with CUDA version 10.1.243 and 8 GB Video 

RAM. The training was run for 100 epochs which completed in 6 hours. The 

hyperparameters used included a learning rate of 0.0001 and a mini-batch size of 4. 

Stochastic gradient descent was used to optimize loss with a momentum of 0.95. To 

minimize gradient explosion, extreme gradient values were clipped to ensure that the L2-

norm equalled the threshold of 1. The flow chart of the training pipeline is as illustrated in 

Figure 32. 
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Figure 32: Flow chart of the Faster-RCNN-based transfer learning process for producing a 

Potato plant detection model 
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5.2.2 Model Testing 

FRCNN model performance was evaluated as follows. Firstly, model performance 

diagnostics on unseen data were conducted using the test dataset. Accordingly, the 

bounding boxes of the FRCNN detections were compared with the ground truth. The 

Intersection over Union (IoU) of all bounding boxes with ground truth data were computed 

then all predicted bounding boxes with more than 0.5 IoU were classified as true positives 

(TP) while those with less than 0.5 were classified as false positives (FP). The TP and FP 

instances were computed for each image and the precision of the detection was evaluated 

as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …………………………………………..……………………………………………………...… (19) 

At the standard IoU threshold of 0.5, a high rate of FP was expected, resulting from random 

bias in the ground truth bounding boxes, as opposed to the refined bounding boxes 

generated by the FRCNN model. A high FN rate was expected to penalize Recall and F1-

scores, therefore, the precision metric was used. From an end-product standpoint, it was 

considered more important to accurately detect the presence of a plant while its accurate 

sizing is not as important, prompting the choice of Precision over Recall. The aP of the 

model was computed averaging across all bounding boxes in all the test dataset images. 

The model was also evaluated for the accurate generation of an observed plant count at 30 

different sites across the Horse Foxhole Farm collected 14 days after emergence. 

Accordingly, an aerial imagery survey covering the entire field was conducted on 2nd May 

2019 at 30 m altitude using a DJI Phantom 4 pro UAV with a global positioning device for 

geo-referencing images. The UAV was equipped with a Hasselblad L1D-20c aerial camera 

with a 2.54 cm CMOS sensor producing 20 MP still images with a 70° field of view (FOV). The 

UAV and image acquisition interval ensured an 80% overlap in adjacent images at a ground 

sampling distance of 1 cm. A second field named Buttery Hill (Table 19) was also evaluated 

using the model. Images at Buttery Hill were acquired using the DJI phantom 4 at an 

increased altitude of 80 m with a ground sampling distance of 2 cm per pixel on 1st May 
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2020, 43 days after planting and 18 days after emergence. At each of the two fields, a single 

geo-referenced raster for the entire field was produced by stitching all the images together 

with structure-from-motion techniques using Pix4D (Pix4D, 2016).  

To predict a plant density map at the two fields, a grid of 1 m2 sized quadrats was imposed 

on the raster for each field in order to run the FRCNN model. Quadrats of less than 1 m2 at 

the edge of the field were also processed. After detection, it was necessary to determine 

the presence of merged stems which could not be reliably counted. To do this, each 

detected bounding-box was converted to a binary mask and the length of its major axis was 

calculated and converted to centimetres using the ground sampling distance of the image. 

Twenty-five centimetres was chosen as a threshold to represent the length of the major axis 

(diagonal) of a bounding box at which it would be considered to represent a merged group 

of plants. All quadrats where a merged plant was discovered were removed from the 

analysis and the quadrat was replaced by an equally-sized null matrix. For all valid 

detections, a null matrix equal to the size of the quadrat was also produced but the centroid 

pixel of the matrix was assigned a value equal to the number of plants that was detected in 

the quadrat, creating a sparse matrix with only the centroid pixel containing a non-zero 

value.  The series of sparse and null matrices were then stitched together to re-constitute a 

grayscale image of the same dimensions as the original raster. The grayscale image was 

saved as a Tagged Image File Format (TIFF) file and associated with the “world file” of the 

original geo-referenced raster. This processing created a georeferenced grayscale image 

predominated by zeros, with a series of non-zero pixels representing estimated plant 

densities from the FRCNN model at the non-zero pixel locations. The raster was then 

vectorised into spatial sampling points in arcGIS (ESRI, 2020) and all null-valued points were 

discarded, leaving a point sampling dataset of estimated plant densities across the field. The 

points dataset was then interpolated across the entire field to produce a continuous 2-D 

plant density plot of the field using a Gaussian variogram in ArcGIS (ESRI, 2020). The flow 

chart of the process to generate of 2D density plots from UAV orthomosaics was as 

illustrated in Figure 33. 



154 

 

 

 

Figure 33: Flow chart for the production of a plant density plot from a transfer-learning 

model 
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At Horse Foxhole, atmospherically corrected (Level – 2A) Sentinel-2 satellite imagery was 

acquired from the Copernicus Open Access Hub on 12th May 2019. The date was chosen due 

to the absence of clouds in the satellite imagery after manual inspection. Additionally, this 

was the date on which the first discernible green vegetation spanning all of Horse foxhole 

was visible in the satellite images. Manual inspection was also conducted to ensure that 

there was spectral mixing with soil features in the images, indicating the lack of canopy 

closure. The satellite imagery of 10 m spatial resolution was clipped to the field boundaries 

of Horse Foxhole then processed in ArcGIS to calculate the NDVI of Horse Foxhole. The pixel 

values of the NDVI at 10 m spatial resolution were extracted then an interpolated surface of 

the whole field at 1 m spatial resolution was created by kriging with a Gaussian variogram 

model. Kriging was chosen after the inspection of significant spatial autocorrelation in the 

NDVI (Moran’s test P-value <0.001). Similarly, a manual inspection was conducted on the 

Sentinel-2 satellite imagery at Buttery Hill for cloud-free images. However, no further 

analysis of satellite imagery was conducted at Buttery Hill because all available cloud-free 

images met the exclusion criteria of having either bare soil (before emergence) or merged 

canopies without visual spectral mixing between vegetation and soil.  

In both fields, 30 sampling sites were randomly selected and plant densities determined at 

each point using a 1 m row of plants. At harvest, the potato yield components were 

determined including marketable yield per square metre, average tuber weight, number of 

total and marketable tubers (per plant and square metre) and number of stems per square 

metre. The utility of plant density predictions from the interpolated surfaces of the FRCNN 

model and the NDVI in inferring the yield components was evaluated using the Pearson’s 

Product Moment Correlation (PPMC). The accuracy of the interpolated FRCNN surfaces in 

predicting the actual plant densities were evaluated using the root mean squared error 

(RMSE).  

5.3 Results 

Using the test dataset of 248 images from Horse Foxhole, the FRCNN model achieved an aP 

score of 0.78. Figure 34 shows the actual vs predicted number of plant objects in the test 

dataset drawn from the same pool as the training data. Overall, the model predicted the 
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actual number of plants in an image to within 2 stems error as illustrated in Figure 34 (RMSE 

= 1.59). The model had a nRMSE of 0.19 and R2 of 0.80, though the scatter plot revealed 

relatively larger variation between observations and model predictions at higher plant 

densities, elucidating the decrease in model accuracy in closely spaced and potentially 

merged plants. Manual assessments showed that the model under-predicted the ground-

truth bounding boxes in images with merged plants.  

 

Figure 34: Actual vs Predicted potato plant numbers in a test dataset of potato plants using 

predictions from a Faster-RCNN transfer learning model 

Some images contained potato plants that were emerging from the ground but had not 

formed enough above-ground foliage to be confidently annotated. The model learned and 

labelled these as potato plants, leading to over-prediction in a small number of instances. 

An illustration of this is in Figure 35, where the model predicted one more plant than the 

originally annotated ground truth on account of a single planting station that had delayed 

emergence and was not annotated in the ground truth but predicted by the model. In 
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practical terms, the model predictions were closer to the actual plant density than the 

ground truth labels in this instance. Due to the clear linear relationship between the 

predicted and actual plant counts, reliable plant density maps of the whole field could be 

constructed from the model and compared to observed densities. 

 

Figure 35: Visualisation of the bounding-box predictions from a Faster-RCNN transfer-

learning model (red colour) against manually labelled bounding boxes (yellow colour) at 

Horse Foxhole Field (image width = 1.5 m) 

The plant density map of Horse Foxhole (Figure 36) revealed considerable systematic spatial 

variation in the plant stand, showing higher plant densities in the edges of the field 

compared to the middle. This was determined to result from an inconsistent seed metering 

mechanism during planting at the edges, resulting in very high plant densities. This was 

rectified when the middle section of the field was planted, culminating in the observed 
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differences. The variation in predicted plant density coincided with the variation observed in 

NDVI (Figure 37), showing that early-season NDVI sensed by the sentinel-2 is partially 

influenced by the plant density on the ground. NDVI was not measured at Buttery Hill due to 

the lack of cloud-free images before significant canopy consolidation in the Sentinel-2 

repository, therefore the NDVI map and plant density map are not shown. 

 

Figure 36: An interpolated predicted plant density plot of Horse Foxhole field, predicted using 

the Faster-RCNN transfer learning model 
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Figure 37: An interpolated plot of early-season NDVI in the Horse Foxhole field constructed 

from a Sentinel-2 (10 m spatial resolution) satellite image 

Comparison of the actual plant populations at Horse Foxhole and Buttery Hill against the 

predictions from the FRCNN model (Figure 38) showed that the model performed 

comparably with the test dataset, with a RMSE of ~1 plant, nRMSE of 0.24, showing good 

accuracy at low plant densities but largely under-predicted at the high plant densities at 

Horse Foxhole. Overall, there was less variation in planting density at Buttery Hill compared 

to Horse Foxhole where high actual plant densities of up to 8 plants per square metre were 

observed, corresponding to approximately 12 cm spacing between plants. There was a large 

degree of overlap between plants at these plant densities, causing the model to miss some 

detections and subsequently return lower plant densities than expected. However, the 

model still highly captured the variation in plant densities (R2 = 0.80) and therefore the 

density map produced was a reflectance of observed variation. 
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Figure 38: Actual plant density at Buttery Hill and Horse Foxhole vs predicted densities from 

the Faster-RCNN transfer learning model 

Table 20 shows the mean and standard deviation of the potato yield components at Horse 

Foxhole and Buttery hill. Overall, inconsistent plant spacing at Horse Foxhole had a large 

effect on the plant population density, with an average 5 plants being planted per square 

metre while Buttery Hill had 3 plants per square metre. There was also larger variation at 

Horse Foxhole with a standard deviation of two plants (STD = 1.58) compared to Buttery Hill 

(STD=0.77). Buttery hill produced more tubers per plant than Horse Foxhole, but the mean 

tuber weight was smaller (74 g and 103 g respectively).  
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Table 20: Summary statistics of the plant density and Potato yield components at Buttery Hill 

and Horse Foxhole fields 

  Buttery Hill Horse Foxhole 

Measure Mean (STD) Mean (STD) 

SN/m2 13.45 (3.79) 17.03 (2.7) 

PPN/m2 2.69 (0.77) 5.19 (1.58) 

Mark.TN/m2 34.03 (8.21) 48.26 (6.75) 

Mark.TN/plant 17.83 (6.12) 11.3 (3.28) 

Mark.TN/stem 3.5 (0.86) 3.22 (0.37) 

Mark.Y/m2 3.19 (0.78) 5.49 (0.61) 

Mark.TW/plant 1.31 (0.5) 1.18 (0.4) 

Avg.TW (g) 73.45 (9.72) 103.18 (9.82) 

TTN/m2 44.97 (12.24) 108.59 (14.83) 

SN=Stem number, PN = Plant number, Mark.TN = Marketable tuber number, Mark.Y = 

Marketable yield in kilograms, Mark.TW = Marketable tuber weight in grams, Avg.TW = 

average tuber weight in grams, TTN = Total tuber number, NDVI = Normalized Difference 

Vegetation Index, PPN = Predicted plant number, STD = Standard deviation 

Correlation analysis showed a highly significant correlation between the FRCNN plant 

density predictions and the actual plant densities as shown in Table 21. At both sites, there 

was a correlation of exactly 0.87 between predicted and measured plant density. 

Furthermore, there was a strong correlation (r = 0.61) between plant density predicted by 

the FRCNN model and the NDVI derived from the Sentinel-2 satellite, quantitatively 

buttressing the visual similarity between the FRCNN plant density map (Figure 36) and the 
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NDVI map (Figure 37). The FRCNN-predicted plant density, actual plant density and NDVI all 

showed a similar pattern in their correlation coefficients with potato yield components.  

Table 21: Correlation coefficients showing the relationship between actual plant density, 

potato yield components and plant density predicted from the Faster-RCNN transfer learning 

model at Buttery Hill and Horse Foxhole fields 

  Buttery Hill Horse Foxhole 

Measure SN/m2 PN/m2 PPN/m2 SN/m2 PN/m2 PPN/m2 NDVI 

SN/m2  1  0.53*  0.66**  1  0.47*  0.48*  0.58* 

PN/m2  0.53*  1  0.87***  0.47*  1  0.87***  0.65** 

Mark.TN
/m2 

 0.55*  0.46*  0.36  0.78***  0.29  0.33  0.36 

Mark.TN
/plant 

-0.16 -0.6* -0.61* -0.28 -0.88*** -0.78*** -0.5* 

Mark.TN
/stem 

-0.50* -0.22 -0.40 -0.56* -0.09 -0.18 -0.22 

Mark.Y/
m2 

 0.43  0.48*  0.35  0.58** -0.08 -0.07  0.07 

Mark.T
W/plant 

-0.20 -0.60* -0.57* -0.35 -0.94*** -0.82*** -0.56* 

Avg.TW -0.046  0.17  0.20 -0.42 -0.71*** -0.62** -0.55* 

TTN/m2  0.46*  0.71**  0.54*  0.78***  0.48*  0.41*  0.53* 

NDVI        0.58*  0.65**  0.61*   

* P < 0.05, ** P < 0.01, *** P < 0.001. SN=Stem number, PN = Plant number, Mark.TN = 

Marketable tuber number, Mark.Y = Marketable yield in kilograms, Mark.TW = Marketable 

tuber weight in grams, Avg.TW = average tuber weight in grams, TTN = Total tuber number, 

NDVI = Normalized Difference Vegetation Index, PPN = Predicted plant number.  

Increasing plant density was associated with decreasing tuber number per plant (r = -0.61 at 

Buttery Hill and r = -0.78 at Horse Foxhole). Similarly, a negative significant correlation was 
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observed between NDVI and the number of tubers per plant at Horse Foxhole.  The weight 

of tubers per plant was also negatively associated with plant density at both sites and a 

similar negative relationship was observed with NDVI at Horse Foxhole. Despite the 

significant relationships between plant population and the weight per plant, no strong 

correlation with yield per square metre was observed at both sites. Similarly, no correlation 

between marketable yield and NDVI was observed at Horse Foxhole. The negative 

correlation between predicted plant density and tuber weight per plant at Horse Foxhole (r 

= -0.82, P<0.001) coincided with a positive correlation between predicted plant density and 

total tuber number (r = 0.41, P = 0.01). However, while the tuber number per unit area was 

positively related to the predicted plant density (r = 0.41 at Horse Foxhole and r = 0.54 at 

Buttery Hill), the overall yield per unit area was not significantly different. As observed in 

Table 21, high PPN at Horse Foxhole were negatively correlated with tuber weight (r = -

0.62). The tuber weight per square metre at Buttery Hill was only weakly correlated to 

predicted and actual plant density although the tuber weight per plant was negatively 

correlated (r = -0.57) and the total tuber number was positively correlated (r = 0.54).  

5.4 Discussion 

The predictive precision obtained by the FRCNN model (0.78) is much higher than previously 

reported 0.41 mean average precision by Machefer et al. (2020), who used a Mask-RCNN 

architecture on overlapped plants. Though utilizing Mask-RCNN offers the prospective 

advantage of filtering individual plant masks from overlapping potato plants over ordinary 

FRCNN, Machefer et al. (2020) concede that accurate annotation of individual plants from 

canopy images of overlapped plants is difficult for domain experts and subsequently the 

trained models struggle to make accurate detections. Additionally, Mask-RCNN’s detection 

framework is based on FRCNN, however, Machefer et al. (2020) conducted their study using 

images taken later than four weeks after emergence, while the image acquisition in this 

study was restricted to less than three weeks days after emergence. Therefore, large 

improvements in precision observed in this study are partially due to less overlapping plants 

in the images, on account of earlier image acquisition. While Dijkstra et al. (2019) report 

accurate mapping of individual plant centroids in merged canopies, they did not report the 
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average precision of their models. However, the inherent assumptions of the CentroidNet 

model in relation to potato plants reveal an underlying limitation that at least needs to be 

acknowledged; the radial expansion of a cluster of potato leaves from a centroid location is 

only likely to be valid in non-overlapping single-stem plants. Each planted potato tuber 

produces multiple competing stems that eventually function as independent plants, 

complicating the unit of plant density (Allen & Wurr, 1992). The direction of vectors learned 

from canopy leaf images are therefore expected to point towards the centroid of individual 

stems and not the overall plant object. Similarly, it is not practical for data annotation to be 

conducted in potatoes after a large degree of canopy consolidation because of the difficulty 

in assigning perceived individual main stems and leaves to individual plant units accurately. 

Machefer et al. (2020) also acknowledge this limitation in their data annotation and Li et al. 

(2019) acknowledge it as a source of error in their random-forest-based classification of 

potato plant numbers in an image from extracted plant object features.  Because of these 

limitations, it can be considered impractical to conduct plant detection on images containing 

overlapped plants. While earlier image acquisition can solve the limitations, asynchrony in 

potato emergence days makes it difficult to determine an optimum day for obtaining a 

representative plant population. Beyond the scope of this study, striking a balance between 

premature and late imaging provides one potential solution to these challenges, which can 

be studied for each variety by evaluating model accuracy as a function of the number of 

days after planting. However, this would entail variety-specific recommendations for 

imaging time, which also need further calibration against factors that affect emergence rate 

like planting depth and average soil temperature. In this study, a geostatistical approach 

was chosen to create a sparse matrix of accurate plant density predictions at locations 

where no overlapping plants were observed. 

In the two-stage (FRCNN detection then geostatistical interpolation) approach used in this 

study, it was demonstrated that an accurate 2D surface of the variation in plant population 

density can be created from partially merged canopies, by conducting detections on non-

overlapping plants and interpolating across the whole surface. Except for soil temperature 

and disease incidence, the factors that have been reported to contribute to asynchrony in 

potato emergence like variety, seed-tuber physiological age and apical-dominance-altering 
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seed treatments vary at the seed-lot level (Sankaran et al., 2017). It is therefore reasonable 

to assume that spatial variation in plant emergence early in the season is attributable to 

systematic inefficiencies in planting operations. With an nRMSE of 0.19 for the 

determination of actual plant numbers per image as well as a high R2 value (0.83), the 

current FRCNN model exhibits the robustness required to produce reliable field maps of 

spatial variation in plant density to inform precision agriculture decisions. Comparably, the 

image-analysis-based algorithm by Li et al. (2019) reported a high R2 value of 0.96. However, 

as noted by both Li et al. (2019) and Machefer et al. (2020), the algorithm is heavily 

dependent on the accurate production of a noise-free binary mask based on the Excess 

Green vegetation index, which is not always guaranteed and cannot distinguish between 

weeds and potato plants. The current FRCNN model therefore provides a robust modelling 

pipeline free of the complexity of generating potato image masks from vegetation indices 

deployed in the Mask-RCNN and random-forest-based image analysis algorithm.  

The high correlation between satellite-imagery-derived NDVI and the FRCNN model results 

reported represents novel evidence of a link between early-season NDVI and potato plant 

density. Before canopy consolidation, NDVI is influenced by soil brightness in coarse-

resolution imagery, which is normally corrected using the Soil-Adjusted Vegetation Index 

(Huete, 1988a) when evaluating vegetation health. In the present study, non-adjusted NDVI 

was used with the premise that the level of interference from soil is dependent on the 

number of plants in the pixel. The high correlation value (r = 0.61) between the FRCNN 

modelled plant densities and the NDVI values substantiates this premise. A limitation to the 

use of satellite data for this purpose is the uncertain availability of cloud-free images after 

emergence before canopy consolidation (highlighted in this study by the lack of available 

cloud-free images within this window at Buttery Hill). Nevertheless, early-season NDVI can 

be calculated from UAVs hosting Red and NIR sensors, down-sampled to reproduce the 

spectral mixing observed in satellite imagery. 

The findings agree with Knowles and Knowles (2006) that there is a significant negative 

effect of plant density on the number of tubers per plant. Additionally, they found a 

negative correlation between tuber size (measured as average tuber fresh weight in g) and 
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plant density, in line with the results. In controlled-treatment studies, the effects of plant 

density on yield are largely inevitable due to large fixed differences in plant density between 

treatments, which may not be observed within a typical commercial production field. 

Previous studies (Arsenault et al., 2001; Bohl et al., 2011; N. R. Knowles & Knowles, 2006; 

Love & Thompson-Johns, 1999) report significant positive association between plant density 

and yield, in line with the observations at Buttery Hill. However, the relationship was not 

observed at Horse Foxhole, with yield more related to stem number than plant number. 

Bussan et al. (2007) also found that yield was more related to stem number than plant 

number, with the latter explaining a negligible portion of the variation (R2=0.06).  

Ultimately, the association between plant density and yield appears to be complicated. 

While the findings suggest that areas of high plant density within a field produced more 

tubers per unit area, the number of marketable tubers at harvest was smaller. Assuming 

exponential growth in dry matter production over time (Goudriaan & Monteith, 1990; 

Kooman & Haverkort, 1995), marketable tuber numbers can potentially be increased by 

delaying harvest timing in high density areas to allow for more tuber bulking. One utility of 

the main findings is that plant density maps produced from UAVs can be used as a basis for 

management and harvest decisions, such as variable in-season nitrogen management to 

delay senescence for tuber bulking purposes and subsequently incorporate variable vine 

desiccation and harvest timing.   

5.5 Conclusion 

This study demonstrated the feasibility of FRCNN-based models in the prediction of potato 

plant population and the subsequent production of representative 2D-density maps which 

can inform decisions on precision agriculture. FRCNN models for potato plant detection are 

known to be less accurate in predicting yield when canopies merge and the asynchrony in 

potato emergence makes the trade-off between early and late image acquisition especially 

difficult and most likely impractical for commercial application. Nevertheless, the goal of 

these models is the accurate estimation of variation at the field-relevant spatial scale rather 

than per-plant pin-point accuracy. Therefore, the filtering and subsequent interpolation of 

reliable non-merged FRCNN predictions provides a work-around to the problems of 
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overlapping plants. It is demonstrated that plant density maps produced from this approach 

are consistent with early-season satellite-imagery-derived NDVIscores. Plant counting 

algorithms for potatoes have captured the interest of several computer vision and deep 

learning researchers, and therefore improvements in the CNN architecture and object 

detection frameworks can be reasonably expected, especially in the direction on the 

CentroidNet architecture. Finally, it was shown that a simple frameworks like FRCNN are 

adequate for predicting potato yield components while avoiding the problems associated 

with other estimation methods.  
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CHAPTER 6 - Use of Spatio-Temporal Variation in Sentinel-2 Data to Develop Indices of 

Fine Scale Canopy Variations for Potato Yield and Stem Density  

 

Abstract 

Satellite Image Time Series (SITS) have been used to predict potato yields (Solanum 

tuberosum L.), at regional scales, but extension of such models to local field scale for 

practical use in precision agriculture is lacking. In this study, multispectral data from the 

Sentinel-2 satellite were used to extrapolate continuous spectral signatures of potato plants 

and generate vegetation indices and the red edge inflection point (REIP) to relate to 

marketable yield and stem density. The SITS data were collected from 94 sampling locations 

across five commercially planted potato fields in England, United Kingdom. The sampling 

locations were georeferenced and the number of stems per square metre, as well as 

marketable yield, were determined at harvest. The first principal components of the 

temporal variation of each SITS wavelength were extracted and used to generate 54 canopy 

growth indices to relate to marketable yield and stem population. Marketable yield was 

negatively correlated to the overall seasonal reflectance (first principal component) at 559 

nm with a beta coefficient of -0.53±0.18 (margin of error at 95% confidence interval). Early-

season normalized difference vegetation index, manually counted Stem Density and the 

overall reflectance at 703 nm had a positive significant relationship with Marketable yield, 

suggesting that integration of satellite imagery and manually collected estimates of stem 

density can be used to predict yield. Marketable yield, with respect to the four covariates, 

was modelled with a normalized root mean square error (nRMSE) of 0.16. On the other 

hand, Stem density was significantly related to the Specific Leaf Area Vegetation Index ( = 

1.66±1.59) but the REIP’s farthest position during the season was reached later in dense 

canopies ( = 1.18±0.79) and the reflectance at the REIP was higher ( = 3.43±1.9). This 

suggested that denser canopies took longer to reach their maximum chlorophyll intensity 

and the intensity was lower than in sparse canopies. Potato stem density, with respect to 

remote sensing estimates of vegetation, leaf area and chlorophyll absorption indices was 

modelled with a nRMSE of 0.24. These results reinforce the importance of SITS analysis as 

opposed to the use of single-instance intrinsic indices. Our results highlight the relationship 
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between yield and 559 nm reflectance, often ignored due to the ubiquity of intrinsic indices 

based on the Near Infrared and Red difference. 

6.1. Introduction 

The variation in reflectance of electromagnetic radiation between plants of different species 

and physiological health conditions has enabled the development of remote sensing 

applications for crop health monitoring, high throughput phenotyping, and precision 

agriculture. Satellite-acquired multispectral image data is globally available in the public 

domain at various temporal intervals from the Landsat series of satellites (up to 30 m 

resolution, 16 day revisit time) since 1972 (Bauer, 1973; Dev Acharya & Yang, 2015) and the 

Sentinel satellites (up to 10 m resolution, 5 days revisit time) since 2015 (Szantoi & Strobl, 

2019). Satellite image data are often used to derive vegetation indices, most notably the 

Normalized Difference Vegetation Index (NDVI) developed by (Rouse et al., 1973), which has 

been widely used for vegetation surface classification and crop health assessments. Since 

the launch of the Landsat satellite, a highly active research area has emerged to attempting 

the use of spectral reflectance values of canopies to predict or infer plant-level dependent 

variables of interest through traditional linear regression models or machine learning 

approaches. However, while remotely sensed vegetation indices are often well correlated to 

crop biomass, they often constitute poor indicators of crop yield, which hinders their 

adoption in yield prediction (Turvey & McLaurin, 2012). Consequently, very little crop-

specific published literature exists on the successful use of vegetation indices from satellite 

image data to model yield attributes. More studies are required to establish methods for 

robust transformation of remotely sensed spectral reflectance measurements or the 

different vegetation indices derived from them in order to provide reliable explanatory 

variables for the crop biomass or yield variables of interest. 

The potato is the world’s third most important crop primarily grown for human 

consumption after wheat and rice (De Jong, 2016). This is partially due to its high ratio of 

economic biomass to total biomass (harvest index) (Bradshaw & Ramsay, 2009), which is 

higher than that of all the world’s major cereals (Zea mays, Triticum aestivum, and Oryza 
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sativa) and grain crops (Unkovich et al., 2010). In precision potato agronomy, establishing an 

accurate estimate of plant density for downstream decision-support is an important open 

research area due to the complex physiology of the crop. Although planted seed-tuber 

populations and plant spacing are closely controlled by farmers, potatoes produce highly 

variable stem numbers per planted tuber and each stem eventually develops its own 

independent tuber set and acts as an independent plant unit (Knowles & Knowles, 2006). 

This makes the number of emerged stems a more representative unit of plant density than 

using the number of tubers that were planted or the number of plant clusters that emerge 

from the total planted tuber population. Using the spectral properties of plants, aerial image 

analysis has been used to predict potato plant density in potatoes (Li et al., 2019; Mhango, 

Harris, et al., 2021), however, the unit of plant density used in the studies (the number of 

emerged independent plant clusters per unit area) is not the ideal representative unit of 

plant population (stem density). While machine learning methods have been used to 

enumerate potato stems from images collected using unmanned aerial vehicles (Mhango, 

Grove, et al., 2021), no previous research has attempted to predict stem density from 

satellite images. Development of estimation techniques for stem density remains pertinent 

in potato production, with several studies linking it to tuber size and total yield variations at 

harvest (Bleasdale, 1965; Gray, 1972; Knowles & Knowles, 2006; Love & Thompson-Johns, 

1999; Wurr, 1974). 

Studies using satellite imagery for overall yield prediction in advance of harvest are mainly 

motivated by the need for objective crop production estimates in areas where ground-level 

records are logistically difficult to acquire (Salvador et al., 2020). Such predictive models 

have potentially wide applicability in region-level resource planning and early-warning 

systems for famine in resource-constrained environments. Therefore, several studies on 

agricultural yield prediction from satellite imagery have been conducted in semi-arid 

locations. For example, low resolution (500 m pixel dimensions) satellite imagery from the 

TERRA MODIS satellite has been used to calculate NDVI and demonstrated ability to explain 

up to 84% of the variation in potato yield (Bala & Islam, 2009). Predictive models were also 

developed by (Al-Gaadi et al., 2016) based on NDVI and the Soil Adjusted Vegetation Index 
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(SAVI) from 30 m Landsat-8 and 10 m resolution Sentinel-2 satellite images, explaining 

between 39% and 65% of the variation in potato yield. Additionally, machine learning 

models have been used to leverage NDVI for the prediction of potato yield, with a large 

proportion of the variation in yield (up to 86%), accounted for by the empirical models 

(Salvador et al., 2020). While these are promising results, the models are based on region-

level studies with limited applicability at the farm level and the machine-learning-based 

models do not provide coefficients that are relatable to biophysical processes. Therefore, 

opportunity is lost to understand the underpinning phenomena behind the observed 

relationships for informing future studies. Models designed to infer farm-level phenomena 

require higher spatial resolution than provided by the MODIS satellite, and there is a general 

consensus that higher spatial resolution results in better model accuracy (Kharel et al., 

2020). With up to 10 m spatial resolution, the Sentinel-2 satellite, therefore, provides 

enough detail to model within-field spatial variation in reflectance and potentially infer the 

processes that affect it. However, In-situ measurements for developing models or validating 

remotely-sensed reflectance can come at spatial resolutions that are disparate to the 

satellite product (Ali et al., 2016; Kharel et al., 2020). The use of coarse-scale sensors or 

cropping data to simulate yield neglects fine-scale variability, which raises questions over 

the usability of such models at finer-resolution than provided by the remote sensor (Kharel 

et al., 2020). To resolve this, every pixel of the remote sensing product is typically mapped 

to a single value of in-situ measurements, which can be determined by appropriate random 

sampling, or aggregation (resampling) of the in-situ measurements to the resolution of the 

remote sensing product (See [19,22,23]). While aggregation or collection of a single 

representative value per pixel allows the combination of in-situ and remotely sensed data, 

the establishment of relationship coefficients between the two data sources is often biased 

by the violation of the independence assumption in linear regression modeling, due to 

spatial autocorrelation (McCullagh & Clifford, 2006; Minasny & McBratney, 2005, 2006). 

This remains a significant issue that is often ignored when regression models are produced 

from remote sensing data, leading to biased coefficient estimates (Ali et al., 2016; Kharel et 

al., 2020). Various statistical modeling techniques including Geographically Weighted 

Regression (O’sullivan, 2003) have been suggested for unbiased estimation of regression 
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coefficients (Kharel et al., 2020). Spatial mixed effect modeling techniques (Rousset & Ferdy, 

2014) provide effective ways of dealing with sample non-independence and they provide for 

a non-biased integration of clustered data from different study locations to estimate more 

robust global coefficients. While variations of such approaches are not novel and have been 

used in remote sensing work (see (Unnithan & Gnanappazham, 2020)), evidence of the 

application of these methods in the context of field-level vegetation cover modeling cannot 

be readily found in the literature. 

The timing of image acquisition and the pre-analysis transformations required of satellite 

image data are important for the generation of appropriate data from which inferences can 

be made about the relationship between canopy reflectance and variables of interest. From 

a physiological standpoint, the final dry matter production in potatoes, from which final 

marketable yield is derived, is a function of cumulative absorbed radiation throughout the 

season (Kooman & Haverkort, 1995; Silva-Díaz et al., 2020). The final proportion of the daily 

dry matter that gets allocated to further above-ground vegetative development and/or 

tuber yield is dependent on a time-varying harvest index (Haverkort et al., 2015; Kooman & 

Haverkort, 1995). Therefore, the temporal rates at which a potato canopy develops, 

represented by changes in reflectance, are potential indicators of end-of-season yield. 

Several studies have established the occurrence of an exponential increase towards an 

asymptotic maximum ground cover and leaf area index in potatoes, followed by an 

exponential decrease at senescence (Haverkort et al., 2015; Kooman & Haverkort, 1995; 

Silva-Díaz et al., 2020). The rate and peak of the exponential functions that describe canopy 

development are affected by genetic factors (sown variety) (Geremew et al., 2007) and 

environmental factors such as plant abiotic or biotic stress and plant population (Li et al., 

2019; Machefer et al., 2020), which all contribute to the final yield. Where the genetic factor 

is fixed, the rate and asymptotic peak parameters that define the exponential development 

of the canopy are therefore location-specific and dependent on spatially-variant biotic and 

abiotic stress factors. Potato crop growth models largely rely on the estimation of temporal 

absorption of photosynthetically active radiation which exponentially increases to a maxima 

at full canopy (Kooman & Haverkort, 1995), akin to the typical temporal development of 
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NDVI [20]. The subsequent evolution of the harvest index (ratio of economic to total 

biomass) follows a similar pattern while the total dry matter production follows an 

exponential growth curve (Goudriaan & Monteith, 1990; Kooman & Haverkort, 1995). As an 

implication, a cropping area that maximizes light interception earlier than other parts of the 

field can be expected to yield more due to relatively more time provided for maximal 

biomass accumulation in tubers. Therefore, the temporal rate of development of vegetation 

indices like NDVI can potentially be utilized to predict tuber yield but no studies have 

empirically evaluated this relationship. Accurate estimation of the peak and rate parameters 

governing the temporal development of SITS-derived indices is dependent on the regularity 

of the SITS. Evaluation of the relationship between temporal resolution and model accuracy 

would require systematic resampling of SITS and different time intervals, which is difficult in 

cloud-dependent irregular SITS such as those provided by the Sentinel-2 satellite. Several 

previous studies have used smoothed time series of vegetation indices to extract the index 

values at each day and correlate to crop yield variables (Aparicio et al., 2000; Thapa et al., 

2019). In these previous studies, Pearson’s product-moment correlation was calculated 

between vegetation indices and yield variables at each day for which valid (cloud-free) 

satellite imagery was available, then the evolution of the correlation coefficient over time 

was studied. The day at which the correlation coefficient was maximized was chosen as the 

optimal day of satellite image collection for the maximum predictive value of yield (Aparicio 

et al., 2000; Thapa et al., 2019). The main drawback with such methods is that they work 

best with a high temporal resolution of the satellite imagery over the cropping season, 

which is not guaranteed in satellite imagery due to erratic cloud cover. Collation of images 

for the whole season enables better retrospective modeling and good model performance 

has been reported in previous studies (Al-Gaadi et al., 2016; Bala & Islam, 2009). In a time-

series study of the relationship between satellite-image-derived NDVI and potato yield, 

(Johnson, 2016) found that the correlation coefficient was highest when NDVI was at its 

peak, estimated to be at the middle of a typical growing season. Such models offer limited 

utility for mid-season prediction due to their requirement for full-season data, though the 

relationship coefficients derived from these studies are important for understanding and 

deriving hypotheses for the underpinning mechanistic models governing the phenological 



174 

 

 

development of plants with respect to solar radiation absorption. The discovery of effective 

methods for the extraction of temporal features from irregular SITS and relating them to 

crop phenology is therefore an open research area for which novelty is required. 

The goal of this study was to contribute to the knowledge on the transformations required 

of Sentinel-2 satellite data to engineer features that can be related to biophysical processes 

of interest in potatoes. Specifically, the objective of this study was to derive simple temporal 

peak and rate parameters describing the development of reflectance for selected Sentinel-2 

bands and relate them to potato response variables—yield and stem density. The overall 

temporal development of each band was also encoded as the first principal component and 

related to the response variables, to infer how end-of-season yield relates to this temporally 

accumulated variation. 

6.2. Materials and Methods 

6.2.1. Site Characterisation 

The study was conducted at five sites as summarized in Table22. Deaton 6 and HF7 sites 

were located in marsh-reclaimed land with a shallow water table and high organic matter 

content. Horse Foxhole, Crabtree Leasow, and Buttery Hill were located in well-drained, 

slightly stony, sandy loam soil subtended by weathered sandstone. At all the fields, the plow 

depth during land preparation was 30 cm and beds were formed with 90 cm between rows 

after destoning. The locations of the fields were as mapped in Figure 39. Within each site, 

management practices were conducted uniformly across the field throughout the growing 

period. 
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Table 22: Summary of the location and key production information of the study sites 

Field Name Location Variety 
Number of 
Samples 

Planting Date Harvest Date 

Deaton 6 53°12’20.97” N 
0°21’55.06” W 

Maris Piper 12 10 April 2019 05 August 
2019 

 
HF7 53°12’40.71” N 

0°24’49.76” W 
Maris Piper 23 12 April 2020 18 August 

2020 
 

Buttery Hill 52°46’22.05” N 
2°25’40.46” W 

 

Amora 30 20 March 2020 24 July 2020 

Horse Foxhole 52°46’26.94” N 
2°25’49.38” W 

 

Amora 23 27 March 2019 11 July 2019 

Crabtree 
Leasow 

52°46’15.73” N 
2°25’35.51” W 

Pentland 
Dell 

6 16 April 2020 21 August 
2020 

 

Figure 39: Map of the United Kingdom territory showing the locations of the 5 study sites 

(Crabtree Leasow, Horse Foxhole Buttery Hill, Deaton 6, and Branston Booths). 
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6.2.2. Sampling Design 

To determine representative locations for subsequent yield sampling in each field, a model-

based sampling approach was taken. Our sampling was informed using soil color variation as 

a proxy for the variation of organic matter and by extension soil macronutrient quantities 

(Costa et al., 2020; Yang et al., 2011) that affect yield. The Soil Brightness Index (SBI) as 

described by (Mponela et al., 2020) was chosen to spatially model the soil color differences 

at each field. The average SBI for three months prior to crop emergence was calculated 

using atmospherically corrected (Level-2A) Sentinel-2 satellite imagery of 10 m resolution on 

manually inspected cloud-free days. From the normalized SBI choropleth map, three zones 

of relative homogeneity were defined by k-means clustering (k = 3) to define dark-colored 

soils (k-means cluster centroid ranging from 0.31–0.39), light-colored soils (k-means cluster 

centroid ranging from 0.78–0.87), and medium hue soils (k-means cluster centroid ranging 

from 0.56–0.61). 

In commercial potato production, the variables of interest of this study (stem density and 

marketable yield) are likely to only be managed if they exhibit relatively long-range spatial 

autocorrelation to enable practical mechanized control (Taylor et al., 2018). It was therefore 

necessary to define a practical spatial scale for in-situ measurements. In the most recent 

related large-scale study of the spatial structure of potato stem density and marketable 

yield in the UK, (Taylor et al., 2018) reported relatively long-range spatial autocorrelation for 

both stem density (48 m) and marketable yield (114 m). Agricultural yield processes are 

known to be spatially rough but the decay in spatial autocorrelation is controlled by latent 

field-scale limiting factors (e.g., variety and soil type) which maintain a long-range 

logarithmic decay (de Wijs process) rather than an exponential decay process (McCullagh & 

Clifford, 2006; Minasny & McBratney, 2005). In commercial production, farmers aim to 

produce uniform plant density across the field and any variation is likely to come from 

factors such as a systematic fault in the planting operation, low viability of a batch of seed, 

or soil-borne factors that affect seed germination (Bohl et al., 2011), which have a long-

range of autocorrelation relative to the size of the field as observed by (Taylor et al., 2018). 

This large-scale autocorrelation in comparison to Sentinel-2 satellite data resolution means 
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that fine-scale in situ data on stem number and yield can be resampled to 10 m or 20 m 

resolution while maintaining the structure of the spatial variability. 

Resampling of sub-pixel-scale in situ data to align with the pixel size of Sentinel-2 data is a 

common technique deployed previously to model potato yield (Al-Gaadi et al., 2016) and 

other crops (Escolà et al., 2017; Hunt et al., 2019). During resampling, it is crucial to ensure 

that the assigned in-situ data are collected with enough locational accuracy such that their 

true location aligns with a single pixel of the Sentinel-2 data. In-situ sampling resolution 

must therefore take GPS instrument error into account, in relation to the targeted 

resampling resolution. In this study, a GarminTM eTrex 20 with 3 m accuracy specification 

was used to navigate to the yield sampling locations. The aim was to randomly select a 

sampling point within any 10 m pixel of the SBI map, therefore, a sub-pixel sampling unit of 

6 m by 6 m was chosen to ensure that the sampling location was within a single 10 m pixel. 

A grid of 36 m2 quadrats was imposed across a rasterized SBI surface then random quadrats 

were then drawn from each stratum as sampling points. An intersection of each drawn 

sampling point with the 10 m resolution SBI surface was done to check that the drawn 

sampling point was spatially contained within a single pixel SBI pixel. Statistical power 

analysis (Cohen, 1988) was used to determine the number of sampling points to draw from 

each stratum to maintain a statistical power of 0.8. The effect size was calculated as the 

standardized difference between the expected SBI of dark soils and the combined expected 

SBI of the medium and light clusters. Power analysis was conducted using R (R Core Team, 

2019). Using ArcGIS (ESRI, 2020), the determined sample size was drawn from the grid of 36 

m2 quadrats, extracting the centroid pixel from every 6 m by 6 m quadrat. The extracted 

coordinates were exported into the GarminTM etrex 20 GPS receiver for tracking during yield 

sampling. Since the GPS receiver had a locational accuracy of 3 m, navigating to the centroid 

of the 36 m2 quadrat with the maximum possible 3 m offset ensured that the located point 

was within the intended quadrat. 
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6.2.3. Collection and Processing of Satellite Imagery 

At each site, all cloud-free dates on which the Sentinel-2 satellite captured data during the 

growing period were manually inspected. In total, four post-emergence cloud-free images 

were collected each of five locations (Buttery Hill, Crabtree Leasow, Deaton 6, HF7, and 

Horse Foxhole). A Keyhole Markup Language (KML) file was created for the spatial extent of 

each site then the sen2r (Ranghetti et al., 2020) package in R (R Core Team, 2019) was used 

to download 20 m resolution level-2A (atmospherically corrected) tiles covering the spatial 

extent from the Sentinel-2 image repository at all the determined cloud-free dates, forming 

SITS. For each retrieved image representing an individual Sentinel-2 band, bicubic 

interpolation was used to down-sample the raster to 6 m then the sampling points at its 

corresponding site were superimposed, and the pixel value at which each sampling point fell 

was extracted and stored. The final raw extracted dataset comprised of a time series of the 

pixel values of each Sentinel-2 band for each sampling point at the five study sites. 

6.2.4. Principal Component Analysis 

For each observation point, each of the nine Sentinel-2 bands (resampled from 20 m to 6 m 

resolution) had four reflectance measurements taken at four different times during the 

course of the season. This captured the change in reflectance during the course of the 

season for each band. In order to create an overall representation of the SITS for the whole 

season for the observation point, principal component analysis was chosen. Accordingly, at 

each sampling point, the data was processed by re-arranging the nine bands as observations 

and the four imaging dates as variables, creating a 9 × 4 matrix. The principal components of 

the four dates were then computed and the standardized first principal component was 

determined as a nine-element vector representing the overall temporal variation of the 

observation. The column vector was then transposed into a row vector with nine variables 

representing the values of the nine Sentinel-2 bands for the observation. This analysis, 

therefore, encoded the overall reflectance of each wavelength throughout the season, 

giving an index for its temporal expression. The percentage of variance explained by the 
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principal component at each observation point was also recorded in order to assess the 

amount of variation encoded in each component. 

6.2.5. Rates of Change in Reflectance 

The daily vegetative growth of a potato plant is a function of intercepted radiation and the 

radiation use efficiency mediated by the genotype and environment (Wolf, 2002). The 

intercepted radiation can be estimated as an exponential function of the crop leaf area 

index (LAI), plateauing at full canopy cover before exponentially decreasing towards 

senescence [30,38,49]. Previous reports on the temporal profile of spectral reflectance in 

potatoes, particularly using the Normalized Difference Vegetation Index (NDVI), suggest a 

similar curve of exponential increase in spectral reflectance towards a maxima followed by 

an exponential decrease (Islam & Bala, 2008; Shamal & Weatherhead, 2014). Extracting 

temporal features of interest in multispectral reflectance like the maximal value and the 

rate at which the maxima is reached therefore provides proxies for crop growth rates 

(Velichkova & Krezhova, 2019). In this study, at every sampling point, the reflectance at 

each wavelength was plotted against the days after planting (DAP) on which the satellite 

imagery was obtained (Figure 40). A second-order polynomial equation was then fitted to 

the data to model the exponential growth curve towards a peak. The turning point of the 

polynomial was maximal for wavelengths that are reflected by vegetation (e.g., Near 

Infrared) as shown in Figure 40, or minimal for wavelengths that are absorbed by vegetation 

(e.g., water absorption bands). 
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Figure 40: An illustrative graph showing how spectral index values like the Normalized 

Difference Vegetation Index (NDVI) were plotted in time and their peak and rate 

parameters derived. 

The reflectance at the turning point of the polynomial was therefore determined as the 

peak (or trough for absorbed wavelengths) reflectance of the particular wavelength relative 

to DAP. The rate of growth to maximal reflectance or absorption was calculated by dividing 

the DAP at the turning point by the reflectance value. Apart from the single wavelengths, 

several ratio-based vegetation indices were also calculated, as summarized in Table 23. 

NDVI at tuber initiation was approximated as the NDVI value at 7 weeks after planting. 
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Table 23: Summary of the vegetation indices used in the study. 

Index Name Main Reported Use Formula Reference 

Normalized Difference 

Vegetation Index 

(NDVI) 

Classification of vegetation 

against non-vegetation 

background 

𝝆𝟖𝟔𝟓 − 𝝆𝟔𝟔𝟒

𝝆𝟖𝟔𝟓 + 𝝆𝟔𝟔𝟒
 (Rouse et al., 1973) 

Specific Leaf Area 

Vegetation Index 

(SLAVI) 

Approximating leaf area 

index 

𝝆𝟖𝟔𝟓

𝝆𝟔𝟔𝟒 + 𝝆𝟐𝟏𝟖𝟔
 

(Lymburner et al., 

2000) 

Chlorophyll Index 

Green (CIG) 

Approximating vegetation 

chlorophyll variations 
(

𝝆𝟕𝟖𝟑

𝝆𝟓𝟔𝟎
) − 𝟏 

(Gitelson et al., 

2003) 

Normalized Difference 

Moisture Index 

(NDMI) 

Approximating vegetation 

moisture variation 

𝝆𝟖𝟔𝟓 −  𝝆𝟏𝟔𝟏𝟎

𝝆𝟖𝟔𝟓 +  𝝆𝟏𝟔𝟏𝟎
 
(Wilson & Sader, 

2002) 

6.2.6. Estimation of Red-Edge Inflection Points 

A basic feature of chloroplast biology, photosystems I and II have their maximum absorption 

efficiency at 700 nm and 680 nm respectively, beyond which plants exhibit high reflectance 

of Near Infra-Red (NIR) (Hallik et al., 2019). This zone of the abrupt shift from absorption to 

reflection is referred to as the Red Edge (Horler et al., 1983). Several studies have shown 

that reflectance at the red edge inflection point becomes lower and its specific wavelength 

position shifts higher in vegetation with more chlorophyll-associated absorption of light. 

Therefore the position of the inflection point and its reflectance is used to model chlorophyll 

content and hence photosynthetic efficiency as proxies to dry matter accumulation and 

yield [56,58,59]. The red-edge inflection point can be found by identifying the first derivative 

of a smoothed spectral profile and finding the position of the peak in the red-edge region 

(Horler et al., 1983; Smith et al., 2004). 

In this study, the visible and NIR spectral values derived at each date of sampling were 

plotted and the Savitzky-Golay filter (Savitzky & Golay, 1964) was used to estimate a smooth 

spectral signature (Ishikawa et al., 2015; Velichkova & Krezhova, 2019). At each location, the 
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reflectance values of each Sentinel-2 band were extracted, then each cloud-free date’s 

spectral reflectance signature was plotted as an irregular series. The “sgolay” function from 

the “Signal” package in the R signal package (v0.7–6) was then used to construct a second-

order Savitzky-Golay filter of length 3. The filtered values were used as predictor variables in 

a linear model to predict the original spectral signature. Prior to fitting the linear model, the 

filtered and original values were resampled using linear interpolation to produce a value for 

each wavelength between 492 nm and 864 nm (n = 372). Linear interpolation of Savitzky-

Golay filter results to generate continuous series is a common method used in mathematics 

and computer science (Pan et al., 2017). The linear interpolation permitted the fitting of a 

fifth-order polynomial to allow inflection points at all observed wavelengths and generate 

smooth curves. The polynomial was fitted as a linear model and the fitted values were used 

to approximate the continuous spectral signature. The estimated continuous spectral 

signatures at different time points in the season could then be used to visually evaluate the 

temporal evolution of the spectral signature. 

The first derivative of each smoothed spectral signature was also derived and the 

wavelength position of the maxima in the red edge was determined and extracted as the 

red-edge inflection point following (Gitelson et al., 1996). The estimated reflectance at the 

inflection point was extracted from the smoothed reflectance spectra and this process was 

repeated for all the dates of cloud-free image availability, then the change in the position of 

the inflection point during the course of the growing season was examined by plotting the 

extracted inflection points against DAP. A second-order polynomial was then fitted to the 

plot and the peak was calculated to extract the most advanced wavelength position of the 

Red-Edge inflection point (REIP), the DAP of its observation, and the rate of change. The 

value of the reflectance at the REIP was also extracted (REIPr). 

6.2.7. Yield Data Collection 

At every sampling location, a representative one-meter row was randomly demarcated as a 

yield sampling area. At harvest, the number of plants and main stems within the row was 

counted and recorded as units of plant density. The number of stems was counted after 
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careful excavation of the one-meter demarcation with a spade to prevent any loss of stems 

or tubers. In a plant laboratory at Harper Adams University, the number of tubers with a 

transversal diameter greater than 25 mm at each sampling point was counted then the total 

weight of tubers was measured to 0.01 g accuracy. 

6.2.8. Statistical Analysis 

All tuber yield components were regressed against remotely sensed canopy data to find 

statistically significant relationships. By design, there were two levels of non-independence 

in the study. Firstly environmental and management differences between locations meant 

that observations within a location were more related to each other than those from 

different locations. Secondly, spatial autocorrelation was expected within a location. 

Therefore, a spatial mixed-effect model was appropriate for taking the two non-

independence factors into account. To minimize assumptions on the autocorrelation 

structure, a Matérn covariance structure was chosen due to its flexibility in modeling 

different spatial covariance structures (Minasny & McBratney, 2005; Stein, 1999). All 

statistical analyses were conducted in R (R Core Team, 2019) and the spatial regression 

modeling was conducted using the SpaMM package (Rousset & Ferdy, 2014). Statistical 

significance was evaluated using 95% confidence intervals and the goodness of fit for 

multivariable regressions was evaluated using the Normalized Root Mean Square Error 

(nRMSE). To calculate the nRMSE, first, the RMSE was calculated as follows: 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝑵
∑(𝒚𝒊 −  ý𝒊)𝟐

𝒏

𝒊=𝟏

  

where N is the number of observations, yi is the predicted value and ýi is the observed value. 

Then nRMSE was calculated by dividing the RMSE by the mean of the observed value. The 

coefficient of determination (R2) was computed following (Nakagawa et al., 2017). 
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6.3. Results 

6.3.1. Summary of Spectral Reflectance and Intrinsic Indices 

Using a boxplot overlaid with a dot plot, Figure 41 shows the spread of the peak reflectance 

values of the nine Sentinel-2 wavelengths observed during the growing period at all five 

study sites. The reflectance pattern of individual wavelengths was typical of the spectral 

signature of vegetation, showing low reflectance in λ492 and λ665 with higher reflectance in 

the NIR bands of λ703, λ740, λ780, and λ864. Characteristically, there was higher reflectance of 

λ559 than λ492 and λ665. At all sites, there was lower variation in the reflectance values of the 

absorption wavelengths λ492, λ665, λ1610, and λ2186 than the reflected wavelengths. The strong 

absorption in the photosynthetically active region, coupled with high NIR reflectance 

confirms that vegetated pixels were effectively sampled in the sampling approach. 

Furthermore, very little variation was observed in the absorption bands in every field, 

suggesting relative spatial homogeneity in the absorption of photosynthetically active 

radiation at the peak of the season in every field. This is expected since only a single variety 

was planted at every location. However, a larger variation in the NIR band suggested that 

the slope and location of the red edge varied across a field, a potential indicator of spatially 

variable vegetation density. 
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Figure 41: Illustration of the observed spread of the peak reflectance values of the nine 

Sentinel-2 wavelengths observed during the growing period at five study sites. 

The overall performance of the intrinsic vegetation indices derived from these spectral 

measurements was as presented in Table 24. The peak NDVI values were close to saturation 

as is expected for vegetation, the lowest average NDVI being observed at Horse Foxhole 

(0.81). The gradual temporal increase in NDVI was also apparent, with NDVI at tuber 

initiation consistently lower than the peak NDVI at all sites. The estimated inflection point 

ranged from 711 nm at Horse Foxhole to 724 nm at Deaton 6. The peak SLAVI ranged from 

3.38 at Horse Foxhole to 5.88 at Deaton 6, suggesting that latent location-specific variables 

control peak achievable the leaf area index. The standard deviation of the peak NDVI was 

low, suggesting that late-season NDVI was relatively invariable and a non-ideal indicator of 

spatial variation at the field scale. More variation was observed in NDVIinit, compared to 

peak NDVI at all fields, suggesting that the rate of vegetation development was different in a 

field but the seasonal peak values eventually converge. For modeling yield and stem density 

as a function of these variables, these results imply that more information about field 
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variability was contained in the temporal rate of growth than the peak values of the intrinsic 

vegetation indices. Similarly, there was relatively low variation in the furthest reached 

wavelength of the REIP across the five sites, which suggested a structural constraint to 

absorption beyond ~725 nm at the maximum canopy. There was however a higher standard 

deviation in the REIPr, suggesting that the amount of light absorbed at the inflection point—

and hence the chlorophyll intensity—was highly variable in a field. These multi-level sources 

of variation justified the use of a multi-level analysis approach to derive insights on how 

they related to the final yield and stem density. Indeed, there were location-specific sources 

of genotypic (variety) and environmental (planting date, season) variation, necessitating a 

mixed-effects modeling approach to cluster the data by location. 

Table 24:  Means and standard deviations (in parentheses) of the peak values of vegetation 

indices during the potato production season. 

Site * NDVI1 SLAVI2 CIG3 NDMI4 REIP5 (nm) REIPr6 NDVIinit
7 

D6 0.93 (0.01) 5.88 (0.12) 4.17 (0.48) 0.53 (0.01) 
723.66 

(0.51) 
170 (9) 0.62 (0.09) 

HF7 0.94 (0.03) 5.56 (0.91) 5.21 (1.00) 0.58 (0.04) 
711.68 

(21.23) 
153 (18) 0.53 (0.03) 

BH 0.94 (0.03) 5.18 (0.71) 3.32 (0.83) 0.51 (0.03) 
723.39 

(0.42) 
268 (28) 0.14 (0.14) 

CT 0.87 (0.02) 3.85 (0.31) 4.10 (1.63) 0.44 (0.02) 
719.01 

(2.20) 
305 (19) 0.51 (0.11) 

HFx 0.81 (0.03) 3.38 (0.35) 5.51 (0.61) 0.44 (0.03) 
722.56 

(0.49) 
457 (7) 0.35 (0.06) 

1 = Normalized Difference Vegetation Index 2 = Specific Leaf Area Vegetation Index. 3 = 

Chlorophyll Index Green. 4 = Normalized Difference Moisture Index. 5 = Red-edge inflection 
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point in nanometres. 6 = pixel value at REIP. 7 = NDVI at tuber initiation * : D6 = Deaton 6, 

BH = Buttery Hill, CT = Crabtree Leasow, HFx = Horse Foxhole. Std = Standard Deviation. 

As shown in Figure 42, the observed number of days between planting day and the peak 

value of each intrinsic index was also variable within and between fields. The indices peaked 

between 90 and 110 days. NDVI peak was observed between 89 days at HF7 and 109 days 

and Buttery Hill. The farthest wavelength position of the REIP had high variation at Buttery 

Hill, Crabtree Leasow, and HF7, suggesting considerable spatial variation in the evolution of 

chlorophyll-related reflectance. Across all sites except Buttery Hill, the highest within-field 

variation in the number of days to the peak of an index was observed in the REIP, followed 

by the SLAVI, which are both related to leaf and chlorophyll density.  

 

Figure 42: Illustration of the spread of the observed number of days between planting day 

and the peak value of Normalized Difference Vegetation Index, Specific Leaf Area 

Vegetation Index, Normalized Difference Moisture Index, and the Red Edge Inflection 

Point. 
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As shown in Figure 43, there was also high within-field variation in the number of days to 

the maxima (or minima for absorbed wavelengths) of each individual wavelength, ranging 

from 82 for λ2186 at Horse Foxhole to 130 for λ492 at Buttery Hill. However, there was no 

discernible and consistent pattern between different wavelengths when either grouped into 

reflected vs. absorbed wavelengths or sorted in order of wavelength position. 

 

Figure 43: Illustration of the spread of the observed number of days between planting day 

and the peak value of each of the Sentinel-2 satellite wavebands. 

6.3.2. Summary of Temporal Variables 

6.3.2.1. Principal Components of Reflectance at Different Time Points 

At all five sites, the percentage of variance explained by each of the derived principal 

components at each observation point were aggregated to assess the amount of total 

temporal variation encoded in each component. Table 25 shows the percentage of variance 

explained by the first three principal components averaged at each location. The majority of 
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the variation (>80%) at all locations was explained by the first principal component, with 

less than 20% of the variance explained by the second component and less than a 

percentage point by the third component. Since the principal components were fitted on 

the temporal information at each data point, the consistency of the percentage variation 

contained in the first principle component shows—as shown by the low standard 

deviations—that it is a stable index for encoding the temporal variation of each wavelength 

in a Sentinel-2 pixel. 

Table 25: The mean and standard deviations (in parentheses) of the percentage of variance 

are explained by the first three principal components of the satellite imagery time series 

at each sampling point at five locations. 

Location 
Principal 

Component 1 

Principal 

Component 2 

Principal 

Component 3 

Deaton 6 81.44 (0.24) 18.49 (0.23) 0.06 (0.01) 

HF7 82.73 (10.34) 16.87 (10.51) 0.32 (0.41) 

Buttery Hill 88.96 (5.67) 10.71 (5.64) 0.26 (0.06) 

Crabtree Leasow 90.54 (6.58) 9.34 (6.55) 0.08 (0.03) 

Horse Foxhole 87.57 (5.13) 12.24 (1.07) 0.14 (0.06) 

Figure 44 shows the line plot of the standardized first principal component, overlaid with a 

dot plot of the actual values of the component at all the spectral wavelengths and all 

locations. The spectral signature of the first principal component was typical of the expected 

response of vegetation, with strong reflection in the NIR range above 700 nm and strong 

absorption at λ492 and λ665, including a sharp inflection point around 700 nm. An 

intermediate level of absorption was observed at λ1610 and λ2186 at Deaton 6, Buttery Hill, 

Horse Foxhole, and Crabtree Leasow. High reflectance in the SWIR was observed at HF7, 

suggesting overall less moisture available in the canopy throughout the season at this 

location. This plot shows that the first principle component preserved the information of the 

spectral signature expected in the crop. Linear modeling of yield and stem density from the 

first principle component values would therefore have a theoretically relatable 

interpretation of coefficients. 
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Figure 44: The spectral signature of the standardized first principal components of each 

Sentinel-2 waveband’s temporal variation in the potato canopies at 5 different study 

sites 

6.3.2.2. Temporal Change in the Spectral Signature and Position of the Red-Edge Inflection 

Point 

Figure 45 shows the monthly change in the average spectral signature for each study site 

over a three-month period, smoothed using a Savitsky-Golay filter. At all the sites, there was 

a visual decrease in the reflectance near the Red-edge inflection point with time, most 

visually discernible at Deaton 6, Horse Foxhole, and Buttery Hill, where the reflectance at 

~700 nm was consistently higher in May than June and July. The transition between low 

reflection ~650 nm and high reflection >700 nm was also sharper in June and July than in 

May, signifying the development of a sharper red-edge as the crop developed more mature 

vegetation, reaching full canopy and masking any bare-ground signal. The implication of this 
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was that the position of the inflection point also shifted towards longer wavelengths 

between the first and second months at all sites, consequent of reduced reflection in the 

Far-Red region and increased reflection in the NIR region. In the third month, reflection in 

the NIR decreased at four of five sites (Buttery Hill, Deaton 6, Horse Foxhole, and Crabtree 

Leasow), possibly due to the onset of canopy senescence. At HF7, the reflectance at the 

inflection point decreased in the third month coupled with a large increase in NIR 

reflectance. 

 

Figure 45: Smoothed (using the Savitzky-Golay filter) spectral signatures of the potato 

canopy at the 3 different times of the season at Buttery Hill (A), HF7 (B), Deaton 6 (C), 

Horse Foxhole (D), and Crabtree Leasow (E). 
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6.3.3. Summary Statistics of In-Situ Potato data 

Table 26 shows the means and standard deviations of the potato yield components at the 

five study sites. The marketable yield ranged from 3.32 kg/m2 at Buttery Hill to 5.49 kg/m2 

at Horse Foxhole showing large inter-site variation. Within the site, there was also 

significant variation as evidenced by the large differences in coefficients of variation for 

each site. Considerable variations were also observed in the number of stems per square 

meter within a field, ranging from 0.17 Coefficient of Variation (standard deviation divided 

by the mean) at Deaton 6 and 0.28 Coefficient of Variation at Buttery hill. Overall, Horse 

Foxhole had the highest stem and plant number due to frequent double-tuber-placement 

and subsequently recorded the highest yield. The lowest yield was observed at Buttery Hill, 

which also had very low tuber size and weight compared to the other sites. The between-

sites and within-site variations necessitated the use of a mixed model approach with a 

spatial component to account for spatial autocorrelation when modeling the combinations 

of satellite-sensed variables in relation to the tuber yield components. 

Table 26: Summary statistics (mean with standard deviation in parentheses) of the potato 

yield sampling results at five different study sites. 

Yield 

Component 

Deato

n 6 
HF7 

Buttery 

Hill 

Crabtree 

Leasow 

Horse 

Foxhole 

Marketable 

yield (kg/m2) 

4.17 

(0.48) 

5.21 

(1.00) 

3.32 

(0.83) 

4.10 

(1.63) 

5.49 

(0.61) 

Number of 

Plants/m2 

2.50 

(0.29) 

2.51 

(0.60) 

2.78 

(0.70) 

2.67 

(0.61) 

5.19 

(1.58) 

Number of 

Stems/m2 

9.77 

(1.67) 

12.37 

(4.17) 

13.52 

(3.83) 

12.22 

(2.83) 

17.03 

(2.70) 

6.3.4. Linear Model for Marketable Yield 

Marketable yield was modeled as a function of the fixed effects λ559, λ703, and CIGpeak, 

using a spatial mixed-effects structure with the site as a random effect. The fixed effects 
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were chosen based on the theoretical expectation of causation. Table 27 shows the 

standardized coefficient estimates of the fixed effects as well as their confidence intervals 

and spatial autocorrelation estimates. Marketable yield significantly decreased with 

increasing overall reflectance at λ559 (β = 0.53) but increased with increasing overall 

reflectance at λ703 (β = 0.22).  

Table 27: Estimated coefficients for explanatory variables of marketable yield and the 

estimated spatial autocorrelation structure. 

Explanatory Variables Estimate1 

Intercept 4.47 ± 0.18 

NDVIinit
2 0.55 ± 0.19 

Stem Density 0.48 ± 0.18 

λ559 0.53 ± 0.18 

λ703 0.22 ± 0.19 

Model Properties 

nRMSEfixef
3 0.16 

delta AICc4 18.56 

R2 0.65 

D.F.5 87.99 

ICC16 0.21 

1 = beta coefficient± margin of error based on 95% confidence interval, coefficients with 

margins of error that don’t overlap zero are statistically significant (p = 0.05). 2 = Normalized 

Difference Vegetation Index at tuber initiation. 3 = Normalized Root Mean Square Error of 

the fixed effects model, with random effects set to zero. 4 = change in the conditional 

Akaike Information Criteria between the current model and the random intercept model. 5 

= effective degrees of freedom. 6 = Intraclass correlation of the random effects. 
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Higher NDVIinit was associated with higher marketable yield, suggesting that higher early-

season canopy coverage rates are associated with increased yield. An increase in stem 

density was also positively associated with marketable yield (β = 0.48). The location random 

effect structure with a Matérn covariance structure explained 0.27 of the total variance as 

shown by the intraclass correlation coefficient (ICC1) value, showing that most of the 

variation in the data was explained by factors other than the random effect structure. As 

shown in Table 27, the fixed-effect coefficients fitted the data with an nRMSE of 0.16 and 

the model had an R2 of 0.65. 

6.3.5. Modelling Stem Density 

Table 28 shows the standardized coefficient estimates of the fixed effects that best-

modeled stem density as well as their confidence intervals and spatial autocorrelation 

estimates. Stem density was modeled as a function of the peak SLAVI and the rate at which 

SLAVI was gained before the peak, assuming that areas with lower stem density would gain 

SLAVI at a higher rate to compensate for the sparse canopy but end up with comparatively 

lower final SLAVI. It was hypothesized that the shift towards the farthest possible 

wavelength of the Red Edge inflection point would be slower in higher stem densities due to 

potentially faster development of leaf area at the expense of chlorophyll intensity. Non-

adjusted NDVI before canopy consolidation (NDVIinit) was also used to represent early-

season differences in vegetation intensity, which are partly used to model stem and plant 

density. The Matérn covariance structure was used to account for the spatial 

autocorrelation at each site. As shown in Table 28, significant positive relationships were 

observed between stem density and all the variables. Field sections with higher stem 

densities took longer to reach their maximum possible inflection point and had a higher 

reflectance at the inflection point. Higher stem density was significantly associated with 

higher NDVI at tuber initiation (β = 1.19) and a higher SLAVIpeak (β = 1.66), however, the 

rate of change towards the peak SLAVI was slower at higher stem density data points. These 

results suggested that dense canopies achieved a higher leaf area index and had higher 

early-season NDVI but were associated with a delayed date of maximum light absorption 

per leaf. At the farthest inflection point, denser canopies also absorbed less light (higher 
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reflection). The random effect structure explained 0.28 of the total variance in the stem 

density. The fixed effect coefficients fitted observed stem densities with nRMSE of 0.34 and 

the model had an R2 of 0.51. 

Table 28: Estimated coefficients for explanatory variables of potato stem density and the 

estimated spatial autocorrelation structure. 

Explanatory Variables Estimate1 

Intercept 13.5 ± 1.42 

REIPDAP
2 1.18 ± 0.79 

REIPr
3 3.43 ± 1.9 

SLAVIpeak
4 1.66 ± 1.59 

NDVIinit
5 1.19 ± 1.01 

Model Properties 

nRMSEfixef
6 0.24 

delta AICc7 18.92 

R2 0.51 

D.F.8 74.17 

ICC19 0.28 

1 = beta coefficient± margin of error based on 95% confidence interval, coefficients with 

margins of error that don’t overlap zero are statistically significant (p = 0.05). 2 = days to 

farthest Red-edge inflection point position. 3 = Reflectance at the farthest REIP. 4 = peak 

Specific Leaf Area Vegetation Index. 5 = Normalized Difference Vegetation Index at tuber 

initiation. 6 = Normalized Root Mean Square Error of the fixed effects model, with random 

effects set to zero. 7 = change in the conditional Akaike Information Criteria between the 

current model and the random intercept model. 8 = effective degrees of freedom. 9 = Intra-

class correlation of the random effects. 
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6.4. Discussion 

The average reflectance of individual Sentinel-2 bands at their peak as shown in Section 3.1 

showed a spectral signature typical of vegetation, with high reflectance in the NIR and low 

reflectance in the visible range (Gates et al., 1965) at all five locations. The modeling of the 

temporal change in reflectance from Sentinel-2 SITS as described in Section 2.5, therefore, 

enabled the derivation of peak spectral signature that was relatable to the typical spectral 

properties of vegetation. Plotting the first PCA of the SITS on the spectrum space as shown 

in Section 3.2 also showed high standardized PCA scores in the NIR and low values in the 

visible range at all five locations. This shows that the dimensionality reduction of the SITS 

into one variable using PCA still produced variables that are spectrally relatable to the 

expected reflectance pattern of vegetation. This study showed that most of the temporal 

variation in the reflectance of individual wavelengths can be represented within the first 

principal component. This dimensionality reduction enabled the encoding of time 

information into one dimension while preserving the spectral reflectance information. The 

high percentage of variation contained within the first principal component compared to 

the second and third components showed the adequacy of single-dimension decomposition 

in this case. Subsequent yield modeling also showed that the information in the first 

principal component was significantly relatable to yield. With temporal information 

encoded within the principal component, this approach implies that there is potentially no 

need for conducting correlation analyses on several days of the season in order to find an 

optimal time of image acquisition for maximizing the correlation between yield and spectral 

reflectance as implemented in previous studies (Aparicio et al., 2000; Thapa et al., 2019). In 

forward use cases of this approach, Sections 2.4 and 2.5 describe the methods needed to 

replicate the representation of the temporal information. These approaches are replicable 

where enough cloud-free data is available from the Sentinel-2 repository. In this study, the 

first principle component was observed to contain the majority of the temporal variation at 

all 5 sites. While this was consistent across sites, it is still recommended to validate this 

assumption at any iteration instance and consider the other components, should they hold 

an equally significant amount of variance. 
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For the intrinsic indices, the mean NDVI approached saturation at all sites with very little 

variability within sites, which highlights the limitation of using the indices at full canopy for 

mapping within-field spatial variation. The observed REIPs between 719.10 nm at Crabtree 

Leasow and 723.66 nm at Deaton 6 were comparable to previous findings in potatoes using 

the linearized algebraic formula (Herrmann et al., 2011) and observation of first derivative 

peaks of the reflectance (Fernández et al., 2020). This adds to the evidence that the REIP 

falls around 720 nm in potatoes. The temporal pattern, as summarized by the number of 

days to peak reflectance values as well as the differences in the spectral signatures at 

different times of the season, shows a rapid early increase in canopy reflectance of NIR (and 

absorption of visible wavelengths) between May and July, followed by a slight decrease in 

August, mostly reaching a peak between 90 and 110 days. This implies that an exponential 

change in ground cover and leaf development leads to an increase in the surface area for 

NIR reflection towards a peak, which is the growth model expected for potatoes (Kooman & 

Haverkort, 1995). This observation gives credence to the use of SITS in place of manual 

canopy assessments for mid-season calibration of potato growth models to map within-field 

variations. 

The multivariable modeling of yield as a function of spectral measurements revealed the 

significance of the λ559 wavelength in within-field yield modeling. Most studies on the 

multispectral analysis of the canopy for yield prediction focus on the NDVI, being a well-

known index for differentiating vegetation from non-vegetation and quantifying its 

intensity. This often comes at the expense of the visible wavelengths, especially λ559 which is 

ignored in most vegetation indices. The analysis showed that high λ559 absorbance was 

significantly associated with a higher yield, with a high standardized beta coefficient. This 

suggests that a portion of PAR is absorbed in the green portion of the spectra and 

contributes significantly to yield. In line with this observation, (Gates et al., 1965) reported 

that although plants are highly reflective in the Green portion of the spectrum relative Red 

and Blue, the Green pigmentation darkens in mature leaves with maximum chlorophyll 

content, and absorption is observed in the green portion. Mature leaves with maximum 

chlorophyll content (and therefore relatively high photosynthetic capacity) have lower green 
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reflectance. This is supported by several authors (Datt, 1998; Lorenzen & Jensen, 1988; Sims 

& Gamon, 2002) who report chlorophyll-related absorption in the green wavelengths. 

Particularly, (Lorenzen & Jensen, 1988) links high green reflectance to low biomass 

accumulation in mature wetland vegetation. Furthermore, the high negative coefficients 

λ559 suggest that areas with a relatively larger reflective surface for λ559 (therefore higher 

above-ground leaf area) within a field had higher partitioning of photosynthetic products to 

the canopy at the expense of tubers, in line with the expected widely studied trade-off 

between canopy and tubers in the development of a harvest index (Bélanger et al., 2001; 

Mackerron & Heilbronn, 1985; Oparka, 1985; Oparka et al., 1987). While reflectance at λ559 

is likely to be affected by soil in non-consolidated canopies early in the season, the relative 

soil effect can be expected to be uniform across the field, assuming relatively consistent soil 

color. The effect of soil gets diminished over time as potatoes reach maximum ground cover 

around 50 days after emergence (Connell et al., 1999). In this study, the median number of 

days to peak reflectance of λ559 ranged from 88 at Buttery Hill to 105 at Deaton 6, showing 

that λ559 intensity continues to develop after the full canopy is reached and the effects of 

soil are no longer applicable. In line with previous research (Knowles & Knowles, 2006; 

O’Brien & Allen, 1992), a significant relationship was observed between stem density and 

marketable yield, showing the relevance of stem density as a unit of plant population with 

practical relevance for yield modeling. Denser canopies approach full ground cover faster 

and therefore have a relatively long time of tuber bulking at full canopy hence returning a 

higher yield potential, which is the basis of many potato yield models (Aliche et al., 2018; 

Kooman & Haverkort, 1995). In line with this, early-season NDVI—which was used as a proxy 

to differences in vegetation intensity (Salvador et al., 2020) early in the season at tuber 

initiation—was observed to positively relate to marketable yield. Reflectance at λ703 and the 

NIR spectrum portion as a whole is largely associated with the development stage of 

internal mesophyllic leaf structures that act like reflection and refraction surfaces (Gates et 

al., 1965; Knipling, 1970). In this study, the significant positive beta coefficient between 

overall λ703 reflection and yield is therefore interpreted as a sign of the positive relationship 

between the surface area available for photosynthesis and the final yield. 
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The observed positive associations between stem density and the reflectance at the Red-

edge inflection point are in line with theoretical expectations of a high reflectance in high 

stem density (and therefore LAI) canopies due to high NIR scattering (Clevers et al., 2017; 

Kamenova & Dimitrov, 2020). Increasing plant density is known to negatively affect 

chlorophyll content (Rietra et al., 2017) and subsequently higher stem densities are 

expected to take longer to reach their maximum chlorophyll concentration per plant though 

there may be higher chlorophyll content on a unit area basis due to more leaves. As 

observed in the modeled multivariable regression coefficients, high stem densities were 

significantly associated with higher SLAVIpeak, in agreement with previous research (Chapepa 

et al., 2020). A lower rate of chlorophyll accumulation per plant in high stem densities 

(Rietra et al., 2017) means the canopy takes longer to reach its maximum chlorophyll 

content—and subsequently REIPDAP—as observed in the multivariable model. Finally, Potato 

stem density is partially a factor of plant density, with higher plant densities resulting in 

higher stem densities (Allen & Wurr, 1992). In previous studies, early-season NDVI has been 

used to infer plant population from coarse-resolution aerial imagery. In line with our 

findings from the multivariable modeling, an overall positive relationship between early-

season NDVI and plant population density has been reported in several studies (Arnall et al., 

2006; Shafian et al., 2018). These results show that within-field variation in potato stem 

density can potentially be mapped using SITS, which can be used to map management zones 

for potential variable harvest timing to optimize tuber size distribution. 

6.5. Conclusions 

The temporal profiles of the spectral reflectance of individual bands were revealed to have a 

significant relationship with potato harvest yield that can be traced to physiological 

principles related to the spectral properties of plants. In this study, increasing stem density 

was observed to be related to increases in the position of the REIP and its reflectance value, 

in agreement with previous studies on the effect of vegetation density on chlorophyll 

intensity and the REIP. Additionally, increasing stem density was associated with higher 

NDVI values early in the season (at tuber initiation), showing that intrinsic vegetation indices 

derived from the Sentinel-2 satellite data can be related to this response variable. Some 
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Sentinel-2 data-based indicators of marketable yield were also discovered in this study. 

Early-season NDVI was significantly related to marketable yield, as were temporally 

aggregated reflectance at λ559 and λ703, aggregated as the first principle components of the 

temporal variation. This study reinforces the validity of SITS analysis as an alternative to the 

use of single-instance values of vegetation indices like the peak NDVI. The λ559 band is 

seldom reported in spectral analysis, but this study shows that temporal change during the 

growing season can be predictive of yield. This study, therefore, draws attention to λ559, an 

often discounted spectral band due to ubiquitous reliance on intrinsic indices like the NDVI 

that favor modeling the larger-scale difference between NIR reflectance and Red than Green 

wavelengths. The complex nature of yield processes requires the use of multivariable 

modeling and temporal feature engineering, which was shown in this study to yield useful 

models and highlight significant temporal variables. Finally, this study shows that potato 

main stem density variation can be modeled from temporal features engineered from SITS 

with a low RMSE when the spatial covariance of stem density is taken into account. In line 

with the objectives, emphasis must be made that the models developed in the study are 

inferential and meant to enhance current understanding of the relationships between 

reflectance signals picked up by the Sentinel-2 satellite and the observed ground-truth while 

controlling for within-field spatial effects and clustering of data in multiple locations. The 

coefficients generated in these models take into account the site-specific spatial covariance 

structure fitted using the Matérn function at the five sites. Therefore, the coefficients are 

valid within the confines of the study’s data generating processes, though the significance of 

the coefficients in the context of the proposed physiological links point to the presence of 

key relationships that must inform future studies and/or feature engineering for predictive 

models. 
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CHAPTER 7 - General Discussion 

This work aimed to contribute to the knowledge on the extent to which mapping of soil and 

crop growth variation can be used to infer or predict potato yield and TSD variation in 

typical potato farms. This overall goal was pursued using key specific objectives to: 

1. Examine the relationships between soil properties and potato TSD at harvest, 

indexed using the Weibull distribution shape parameter 

2. Examine if a significant relationship between soil properties and ECa exists 

3. Develop algorithms for individual stem detection in potatoes at an advanced 

canopy development stage using UAV imagery 

4. Investigate the usefulness of spatio-temporal variation of satellite imagery in the 

prediction of potato yield variation in a field 

5. Evaluate the usefulness of plant density maps produced from UAV images in 

predicting potato yield components  

The literature contains a lot of research on the role of genotype and plant population in 

determining the final tuber size distribution (TSD) of a crop, but different studies have used 

different methods for indexing TSD, posing a challenge for inter-study comparison and 

reproducibility. In Chapter 3, for the first time, TSD was described using the unit-less shape 

parameter of the Weibull distribution, creating an index that can be used in inter-study 

comparison. In line with previous research, the findings showed that TSD is better described 

by a Weibull distribution rather than the Gaussian distribution that is often assumed in TSD 

modelling. The use of the Weibull shape parameter to index TSD has not been reported in 

literature. Here, the potential adequacy of directly-estimated Weibull function parameters 

in modelling TSD is demonstrated. These findings make it possible for farmers and 

agronomists to evaluate TSD and predict weights in desired size classes from yield digs using 

simple formulae, making crop modelling more accessible to farmers. Repetition studies over 

a more diverse base of variation in growing environments and varieties are needed in order 

to verify the findings and evaluate their appropriateness for further adoption in commercial 

settings. 
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Chapter 3 also reported the negative effect of P over-fertilization on TSD, consistent with 

previous research in randomized experiments with sharp induced treatment differences 

(see Birch et al., 1967; Prummel & Barnau-Sijthoff, 1984; Rosen & Bierman, 2008; Sharma & 

Arora, 1987), but demonstrated on-farm for the first time. These findings provide evidence 

of yield penalties associated with over-fertilization, which are not elucidated in the 

literature. This brings a focus on the potential yield losses attached to current conventional 

production practices and contributes to the body of work on the need for variable rate 

management of soil fertilization in precision agriculture. This work therefore presents 

pertinent and valid on-farm research and provides a useful contribution to the body of work 

on potato TSD. The indexing of TSD using the linearized Weibull function provides a useful 

decision-support tool for agronomists and farmers to reliably model the variation that they 

observe in the field and alter harvest dates or practice variable harvest timing. Repitition 

studies are recommended to verify these findings in a wider range of sources of genetic and 

environmental variation before practical adoption. 

For precision management of the soil nutrients that were identified in this work to affect 

TSD, high resolution interpolations of low intensity soil sampling points need to be created 

using indices such as ECa as proxies. In Chapter 3.2 it was demonstrated that ECa had very 

limited correlation with soil mineral nutrients at both study sites, making it a poor proxy for 

modelling soil nutrient variability. These findings are in general agreement with the research 

record (Cambouris et al, 2006; Perron et al., 2018) and highlight the need for a more reliable 

index for soil variability. Inconsistent correlations between ECa and soil physical properties 

across sites also showed the unreliability of ECa as a proxy model for soil texture, also 

consistent with the research record (Cambouris et al, 2006; Perron et al., 2018). There was 

no evidence of the usefulness of ECa in modelling soil property variability in this work, 

suggesting that the use of ECa data must be limited to soil water and salinity modelling 

where consistent relationships have been observed in previous studies (Corwin et al., 2009) 

and the direct relationship between ECa and tuber yield components were not explored 

further in this thesis. 
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Chapter 6 showed that tuber yield can be modelled from remotely sensed changes in 

canopy reflectance over time. To derive relationships between remote sensing data and 

tuber yield components, it was required to derive spatio-temporal indices rather than purely 

spectral indices like the NDVI. The results showed that modelling the stem density as a 

function of growth rate indicators like REIPDAP provided the most plausible models. Yield was 

best modelled by indicators of photosynthetic efficiency such as the level of canopy 

development at tuber initiation (NDVIinit) and the overall seasonal reflectance at λ703. With 

limited information in the literature on the use of spatio-temporal data analysis for yield 

modelling in potatoes, this work provides a significant contribution to the field. This work 

demonstrated that SITS can potentially be used as indices of crop phenology in time-step 

crop simulation models, which require accurate phenological data that adheres to 

exponential canopy growth (Kooman & Haverkort, 1995). Coarse spatial resolution and 

limited cloud-free days in satellite imagery remain a challenge for extending this work into 

practical use. Spatial interpolation of SITS to improve resolution is an area of research 

interest (Porwal & Katiyar, 2014) that is recommended to follow this work. Additionally, the 

prediction of spectral reflectance from synthetic aperture radar provides previously tested 

(Filgueiras et al., 2019) potential solutions to these problems that must be researched in 

future studies. 

Spatial resolution problems in remote sensing are ultimately solved by UAVs albeit at a 

significance cost of spectral resolution. This work therefore limited the UAV component to 

object detection using RGB. The enumeration of stems from UAV imagery was proven to be 

possible using traditional image analysis and transfer learning approaches. As reported in 

previous canopy image analysis studies (Li et al, 2019, Machefer et al., 2020), the image 

analysis approach is non-robust to changes in light saturation in the image. The approach is 

also based on clustering algorithms that assume the presence of the object of interest 

within the data, which makes it possible for the algorithm to detect stems in images that do 

not contain any potato plants (Li et al., 2019). The clustering algorithms used for image 

segmentation also require post-clustering data cleaning to remove spurious clustering 

results and consolidate disjointed objects, all of which affected the accuracy of the final 
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model (Yang et al., 2012). While the development of custom vegetation indices for potato 

stems was a good outcome of the work, the practicality of this approach in production 

environments is hampered by these limitations. The custom vegetation indices developed 

were useful for tracking the area of young leaves at meristem tips with low chlorophyll 

content. These indices therefore have potential applicability in other phenotyping or plant 

protection studies where canopy chlorophyll content is pertinent.  

The final models produced using the image analysis approach suggest that the approach can 

adequately be used to produce maps of the spatial variability in stem numbers, assuming 

stochastic sources of error in the models. The transfer learning approach solved most of the 

limitations associated with image analysis. In Chapter 4, a unique pseudo-labelling routine 

was developed, using manually cleaned data from the image analysis approach to create 

labelled datasets for transfer learning. In other pseudo-labelling approaches, the initial 

labelling data is generated by labelling a small subset of data then using high-confidence 

detections from models trained on this subset to generate labels in unlabelled data (Rhee & 

Cho, 2019). For potatoes, this approach is difficult due to the irregularity of the potato stem, 

which makes it hard to delineate accurate bounding boxes for non-experts. Utilizing an 

image analysis approach to create the initial set of bounding boxes automatically after an 

expert sense-check as conducted in this work provides a pathway for faster and repeatable 

pseudo-labelling.  

This study demonstrated that the transfer learning model produced from pseudo-labelled 

datasets performed better than the image analysis based model in detection of stems in 

UAV imagery. In addition, standard transfer learning frameworks (FRCNN) were used for 

training both the plant detection and stem detection models. It was demonstrated that 

these basic frameworks, with the VGG-16 CNN, provided enough learning power to 

accurately classify potato plants and stems, in line with previous observations were the 

VGG-16 and FRCNN have been shown to be adequate for classification of crop canopy 

objects (Fuentes et al., 2017).  
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While deep learning is a highly active research field and improvements to object detection 

training frameworks continue at a rapid pace, this work demonstrated that obtaining 

plausible models is possible using the simple training frameworks. Additionally, the 

detection and mapping of potato plant objects is not likely to require real-time results in 

practical use. The production of maps is likely to be done as a post-processing operation 

either by a data scientist or automatically in a cloud computing environment. This means 

that the slower real-time processing times of FRCNN compared to more modern detection 

frameworks like the YOLO series is not likely to hamper the usability of the models.  

In Chapter 5, it was shown that plant count estimations from FRCNN models provide 

adequate accuracy for production of 2D plant density maps that correlate to potato yield 

components. Previous research uncovered the problem of overlapping plants in late-

acquired images which continue to hamper model accuracies (Machefer et al., 2020; Li et 

al., 2019). While the incidence of overlapping plants can be avoided by early imaging, 

asynchrony in potato emergence means that early imaging runs the risk of unrepresentative 

under-estimations of plant numbers. This makes it difficult to decide on an optimum 

imaging day that is early enough to minimize overlapping plants but late enough to have a 

representative germination rate.  

In this study, it was considered better to collect and analyse the UAV images with the 

assumption of the presence of overlapping plants for a robust solution. Accordingly, post-

processing operations involved deletion of all quadrats of the field containing overlapping 

plants from the UAV orthomosaic and making the model predictions on the remaining valid 

data, followed by geostatistical interpolation of the results to construct a high resolution 2D 

plant density map. The strategy used in this work therefore integrated machine learning for 

object detection, traditional image analysis for deletion of overlapping plants and 

geostatistical analysis for the construction of a continuous 2D map.  

The resultant plant density maps developed from this work correlated with potato yield 

components, corroborating with established research findings of a significant negative 

relationship between plan density per unit area and potato tuber density per plant (Knowles 
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& Knowles, 2006). Similarly, areas where the models predicted high plant density also has 

significantly lower tuber sizes although the number of tubers per unit area was increased on 

account of the higher plant number, in line with Knowles and Knowles (2006).  

This research has shown the potential for using these plant density maps as a tool for 

decision-support for variable in-season N management. Potential decisions from this include 

the delay of dessication for tuber bulking purposes in denser sections of the field, giving a 

basis for variable harvest timing. Finally, for the first time, this research has demonstrated 

the correlation between early-season satellite-derived NDVI and plant population. This 

potentially implies that early-season satellite data can be used to model plant population 

density in potatoes. Further studies are required to ascertain the reproducibility of this 

finding.  

7.1 Conclusion 

In line with the stated objectives, this study successfully:- 

1. Uncovered evidence of some negative relationships between soil nutrients 

concentrations and Potato TSD. This revealed potential for a negative influence 

of excess nutrients on tuber number and size, which have economic implications. 

The establishment of these relationships in on-farm experiments within the 

typical spatial variability observed in actual production showed the relevance of 

spatially variable management of soil nutrient concentrations or delineation of 

harvest timing management zones based on initial soil nutrient variation. 

Additionally, this work established the Weibull distribution as an optimum 

estimator of TSD and for the first time provided and tested the Weibull shape 

parameter as a unit-less index for TSD that can enable the comparison of results 

from different studies. 

2. Examined the reliability of ECa as a proxy to soil properties. Crucially, the study 

found that relationships between ECa and soil mineral nutrients concentrations 

are weak. While some strong relationships with soil physical properties were 
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observed, the correlations were inconsistent and pointed to a conclusion that 

there was no evidence of a generalized relationship between ECa and the soil 

texture and mineral nutrient properties studied in this work. 

3. Developed algorithms based on traditional image analysis and machine learning 

to detect and enumerate potato stems from UAV imagery. This work 

demonstrated the efficacy of a semi-supervised labelling routine integrating 

machine learning and traditional analysis to produce training data that was used 

to successfully learn and detect potato meristem tips. This work also developed 

custom vegetation indices that are effective in detecting chlorotic and young 

leaves, with applicability in other phenotyping domains. 

4. Developed indices for temporal variability in potato canopy reflectance and used 

them to successfully model potato yield and stem density as a function of spatio-

temporal variation in phenological development. This work showcased the 

potential of modelling potato yields from in-season satellite image reflectance 

patterns in advance of harvest. 

5. Evaluated the usefulness of plant density maps produced from UAV images in 

predicting potato yield components. Statistically significant (P<0.05) correlations 

were observed between plant density predicted from UAV images and the actual 

plant density, stem density and the total number of tubers harvested. This work 

therefore demonstrated a successful integration of machine learning, traditional 

image analysis, and geostatistical analysis to produce plant density maps that can 

provide insights into expected crop productivity. 

7.2 Recommendations 

As a follow-up to this work, it is recommended that replication studies be conducted on the 

effect of soil variability on TSD in different varieties, using the Weibull shape parameter to 

index TSD. Randomized experiments on the effect of plant population parameters on TSD 

are also recommended to evaluate if previous findings on the effects of stem number, 

physiological ageing and growth regulators on TSD can be confirmed using the Weibull 

shape parameter. For the satellite studies, this work did not cover the efficacy of spectral 
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unmixing algorithms in prediction of plant population early in the season. Spectral unmixing 

algorithms inherently give sub-pixel ground cover percentages, which can give a 

measurement of crop phenology if evaluated temporary. This work did not include spectral 

unmixing due to the difficulties in establishing objective end-member signatures for 

potatoes and soil. Research towards methods of data pre-processing to establish credible 

end-members is therefore recommended. 

This work established methods for the enumeration of plants and stems in potato UAV 

imagery using an integration of machine learning, image analysis and geostatistical data 

analysis. While most computer vision works focus on improving the object detection models 

to obtain perfect enumerations, it can be contended that precision agriculture applications 

need an accurate representation of spatial variation in plant density rather that absolute 

values. It is therefore recommended that an integrated approach should be adopted, 

deleting spurious detections across a UAV orthomosaic using image analysis and taking 

advantage of the availability of advanced geostatistical interpolation methods to generate 

the high-resolution plant or stem density maps required for decision support. The 

vegetation indices produced for elucidating meristem tips in potatoes have the potential for 

use in identification of chlorosis-inducing biotic and abiotic stresses in canopies. It is 

therefore recommended that research into the applicability of these vegetation indices in 

other canopy analysis works is conducted. 
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9. Appendices 

Appendix A: Example of Field Survey design for Field HF7 

Field HF7 was commercial field, meaning that treatments in a replicated design could not be 

imposed without affecting field operations, however, a field survey could be adequately be 

used to delineate zone of relatively homogeneity. Inherent variability in soil physical and 

chemical properties was expected due to the variability in clay content between the peat 

and the clay dominated rhodons. The gradients of these variables were expected to have an 

influence on crop growth and hence have some correlation with measured crop-

performance-related variables. The Soil Brightness index (SBI) was chosen due to its wide 

use and availability in precision agriculture packages. The SBI data was calculated from 

Sentinel-2 satellite imagery, and used to delineate zones of relative homogeneity. The SBI 

variability of the whole field was re-scaled to range between 0 and 10 for relative 

interpretability, where 0 represented the darkest pixels and 10 represented the lightest 

pixels. After visual inspection of the variability in the SBI image, the field was delineated into 

3 sampling zones of relative homogeneity as follows: 

1. Dark Zone: SBI 0-3 

2. Medium Zone: SBI 4-6 

3. Light Zone: SBI 7-9 

 

A sampling frame spanning the 1.4ha of the field was therefore created and a stratified 

random sampling method was chosen, using the sampling zones as strata and simple 

random sampling used within each stratum. Based on this, the SBI raster data was 

vectorized using arcGISpro, then a grid of 36m2 quadrats was imposed across the vectorised 

surface. Random samples were then drawn from each stratum by assigning random 

numbers to each quadrat in the attribute table, sorting by the random number value then 

selecting the first N quadrats that satisfied the required sample number for the specific 

stratum.   
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The sample size for the survey was calculated by determining the minimum number of 

samples required to adequately represent the SBI variability with a statistical power of 0.8. 

The number of sampling locations of dark soils was based on the dark area proportion, while 

for the medium and light soils, the number of samples was determined by a randomization 

process since the two strata were consolidated during sample size determination. The 

randomization step was performed on the gridded SBI image in ArcGIS to select the actual 

quadrats for soil and yield sampling as illustrated in Figure 46. The selected quadrats were 

georeferenced and assigned with unique identifier codes then exported as a GPx file into 

the GarminTM etrex 20 GPS receiver for tracking during soil and yield sampling. 

 

 

 

Figure 46: A Choropleth map of the field's variation in Soil Brightness and approximate soil 

sampling locations.Soil brightness was re-scaled to range between 0 and 10, where 0 

represents a dark soil and 10 represents a light soil. 
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Appendix B A list of the varieties used to test the object detection models 

Purpose Breeder Variety 

Chipping Agrico Agria 

Crisping HZPC Alcander 

Chipping HZPC Althea 

Chipping HZPC Alverstone 

Russet 

Crisping Agrico Arsenal 

Chipping HZPC Asterix 

Unknown Unknown Babylon 

Crisping PepsiCo Brooke 

Chipping HZPC Challenger 

Crisping Agrico Corsica 

Prepack Agrico Desiree 

Prepack Agrico Estima 

Crisping HZPC Heraclea 

Chipping HZPC Innovator 

Chipping HZPC Ivory Russet 

Prepack Greenvale Jelly 

Prepack Unknown King Edward 

Crisping Meijer Lady Clair 

Prepack Branston Lanorma 

Prepack Branston Laura 

Salad Agrico Maris Peer 

Chipping Agrico Maris Piper 

Crisping Agrico Markies 

Prepack Meijer Melody 

Prepack HZPC Mozart 

Prepack IPM Nectar 
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Prepack HZPC Panther 

Chipping SCRI Pentland Dell 

Chipping Agrico Performer 

Chipping Norika Pirol 

Chipping Higgind 

Group 

Ramos 

Chipping IPM Rooster 

Chipping McCains Royal 

Chipping Unknown Russett 

Burbank 

Chipping HZPC Sagitta 

Crisping Stet SHC1010 

Crisping PepsiCo Shelford 

Unknown Unknown Sorentina 

Prepack HZPC Sunita 

Crisping HZPC Taurus 

Unknown Unknown Thalassa 

Crisping Unknown Titan 

Crisping HZPC Triple 7 

Unknown Unknown VDW 07-197 

Crisping Stet VR808 

 

 


