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GROWER SUMMARY 

Headline 

Progress towards deployment of Genomic Selection (GS) as an advanced breeding 

technique in strawberries is ongoing.  

Background 

Strawberry breeders aim to generate novel genotypes that express traits suitable for the 

industry in their target region. Over the past 200 years, significant progress has been made 

in traits such as flavour, berry size, yield, disease resistance and cropping season duration. 

Current goals in strawberry breeding include improvements in maintenance of post-harvest 

fruit quality, yield, texture and flavour. 

Traditionally, crossing is conducted based on identification of desirable traits in parental 

germplasm material. Offspring from a cross are assessed throughout the growing season and 

scored on a weighted index of favourable traits. The highest scoring individuals are selected 

to progress onto further larger scale trials, where additional information, such as yield and 

picking speed are gathered, and to confirm the presence of the favourable traits. Additionally, 

the selected genotypes are assessed for suitability across a range of environmental 

conditions, with particular focus on the target region. Overall, making crosses to release of a 

novel cultivar may take between 7 and 10 years. 

Genetic markers are detectable features within the genome of a plant that may differ between 

individuals of the same species. Markers that are physically close to genetic variants 

controlling economically important traits tend to be co-inherited with the desirable genetic 

variant when the plant produces offspring, making some markers reliable proxies for these 

genes. Over the past 20 years, the number of known markers has dramatically increased and 

the cost of identifying them has greatly decreased. It is now possible to incorporate genomic 

information in the breeding process to aid breeders in selection of the optimal individuals. 

GS offers a range of benefits relative to conventional breeding approaches. Firstly, it allows 

for greater selection accuracy as the confounding environmental effects on a trait can be 

eliminated. Secondly, it allows for strong selection on traits that are expensive or difficult to 

assess or selection on traits that are apparent only under rare environmental conditions. 

Thirdly, as multiple traits can be assessed, GS potentially allows selection at the juvenile 

stage, reducing the duration of the breeding cycle. Moreover, GS is particularly suitable for 

identification of traits that are controlled by many genes (polygenic traits) as its simultaneous 

regression of all markers on all traits reduces the likelihood of over/underestimation of effect 
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size. GS also potentially allows control of inbreeding and elimination of certain field 

experiments. 

Summary 

Strawberry is an economically important crop with global and UK production on an upwards 

trend. Strawberry breeding efforts attempt to generate novel varieties that have increased 

yields, resistance to pathogens, good eating quality and high nutritional content. Genomic 

prediction (GP) is an advanced marker assisted prediction (MAP) technique that makes 

predictions about agronomically important traits in crops. Three areas of improvement were 

identified to assist commercial deployment of GP for strawberry. 

Breeding efforts currently rely primarily on visual and mechanical measurement of plant 

phenotypes, which is slow, imprecise and liable to human biases. A strawberry phenotyping 

platform was developed that captured images from 360 degrees around the strawberry fruit 

to generate 3D representations. Seven fruit quality traits were calculated from the 

representations, which showed good concordance with manual measurements. Deployment 

of the system could lower phenotyping costs, increase throughput, increase precision and 

thus improve GP accuracy. 

Current genotyping approaches for dense marker panels in strawberry are too expensive for 

commercial deployment. A rational design process was implemented to generate amplicon 

sets that would genotype a panel of markers to maximise information for GP, with scalability 

to accommodate resources available to different breeding programmes. The design process 

failed to generate marker information due to unexpected interaction in the multiplexed PCR 

reactions. 

The relative effectiveness of phenotypic prediction and MAP in strawberries is unclear. 

Moreover, existing models of GP in strawberry does not represent all the traits of interest to 

breeders. Between years predictions of 15 fruit quality traits were implemented using 

phenotype only, traditional MAP (tMAP) and GP models. GP had similar selection accuracy 

compared to phenotype only prediction, but tMAP performed significantly worse than the 

other models. It was concluded that GP would likely yield benefits to strawberry breeding in 

the context of speed breeding. Models for GP for 15 strawberry fruit quality traits are available 

for breeders to deploy in their breeding populations. 
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Financial Benefits 

Due to lack of evidence of the efficacy of the proposed genotyping approach at £5 - £10 per 

sample, it is assumed that genotyping costs will be using the 35K SNP array Axiom IStraw35 

384HT array. Under these conditions, it is unlikely that GP can be cost-effectively integrated 

into UK strawberry breeding programmes. Further research is needed to decrease the cost 

of genotyping strawberries whilst maintaining efficacy of GP. 

Action Points 

Phenotyping of seven external strawberry fruit quality traits can be sped up five-fold, reducing 

labour costs, using a novel automated 3D image capture and analysis platform. Where 

genotypic data exists, 15 strawberry fruit quality traits can be predicted with higher accuracy 

than tMAS using the described novel models. 

These techniques need further investigation before they can be effectively integrated into 

current breeding programmes. 
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SCIENCE SECTION 

Introduction 

Genomic selection (GS) is an advanced breeding technique that utilises a densely genotyped 

and phenotyped training population, from which associations are made relating the magnitude 

and direction of quantitative trait loci (QTLs) associated with agronomically important traits 

(Meuwissen, Hayes, Goddard, et al. 2001). GS has been successfully deployed in a range of 

crops, including grape (Viana et al. 2016), wheat (Heffner, Jannink, and Sorrells 2011; 

Thavamanikumar, Dolferus, and Thumma 2015), maize (Shikha et al. 2017) and strawberry 

(Gezan et al. 2017). Deployment requires a training population, which is densely genotyped 

and phenotyped for the agronomically relevant traits. A statistical model is developed, which 

associates the genotype and phenotype. Solely on the basis of the genotype and statistical 

model, breeding values for breeding material is estimated and selections are made (Heffner, 

Sorrells, and Jannink 2009; Meuwissen, Hayes, and Goddard 2001). 

There are a range of benefits associated with GS. Firstly, assuming that there are sufficient 

markers available, GS has been demonstrated to generate greater prediction accuracy than 

conventional selection. This is largely due to the approach ignoring the variable and non-

hereditary environment (De Los Campos et al. 2009). Secondly, GS allows the regression of 

a genotype onto multiple individuals, allowing increase in power of detection of small effects. 

Moreover, this allows selection on rare, expensive, or otherwise difficult to phenotype traits. 

For example, consider a rare event, such as a harsh drought in the summer that is expected 

to occur only every 10 years. It is possible that this does not occur during the entire breeding 

cycle of a novel cultivar, and thus no phenotypic information about crop performance can be 

gathered. Under conventional selection, no predictions can be made regarding plant 

performance under harsh drought, but under genomic selection, predictions can be made 

based on the genotype of the novel cultivar and data gathered from genotypes from all 

instances of harsh drought (Heffner et al. 2010; Peace et al. 2017). Perhaps most importantly, 

GS allows for the reduction of the duration of the breeding cycle as plants can be genotyped 

and selected for in the seedling phase. Additionally, GS allows for elimination of some field 

experiments and better planning of crosses by providing information on relatedness (Gezan 

et al. 2017). GS performs better than marker assisted breeding (MAS) because it 

simultaneously estimates the effect size for all markers, and thus is less likely to overestimate 

the "'significant" and underestimate the "insignificant" MAS markers. 

Various models have been deployed to predict plant performance based on previous trait 

data, with linear models being commonly used. There are a large number of classes of 

equations to model the effects of genetics on phenotype, but often the solutions to such 
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systems are mathematically challenging and requires knowledge of constants which may be 

difficult to estimate. There is no particular reason to assume that the effect of the variation in 

genetic data on phenotype is linear, but restricting the class of equations to linear additive 

models simplifies the modelling and allows utilisation of a range of tools already developed 

for linear analysis. Typically, the only constants that need to be known are the first and second 

moments of the variables to be estimated (Henderson 1975). Moreover, empirically, linear 

models have shown success in prediction of plant and animal performance in breeding 

populations (Bates et al. 2015). 

Linear mixed model (LMM) is often deployed to predict plant traits based on data gathered 

from previous years or other populations. The LMM assumes the observed phenotype is a 

linear combination of a set of fixed and random effects. 

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 

where y is a vector of observed phenotypes, X is a design matrix for the fixed effects, b is a 

vector of fixed effects, Z is a design matrix for the random effects and e is the error. The 

random effects are assumed to be drawn from a normal distribution with mean 0 and a known 

variance covariance matrix u ~ MVN (0,G); e ~ MVN(0,R). In the context of plant breeding, G 

represents the genetic covariance between the individuals and R represents their 

environmental covariance. 

In cases where the number of effects to be estimated differs from the number of unique 

measurements, then no unique solution can be obtained (more precisely, in the system Ax = 

b with augmented matrix [A|b], a unique solution exists if and only if rank [A] = rank [A|b]). 

Under this model, it is common to treat plant performance as a random variable, making 

predictions with the best linear unbiased prediction (BLUP) (Molenaar, Boehm, and Piepho 

2018). Originally developed for animal breeding, BLUP models the genotype effect on the 

observed phenotype as a random variable, with other effects including location, block and 

experimental year classed as fixed variables. BLUPs have properties that are desirable in 

prediction models: of all the linear models where predictions are unbiased, it has the minimum 

variance. Additionally, it incorporates shrinkage towards the mean, which is a desirable 

statistical property of an estimator, as it increases accuracy, leading to a smaller mean 

squared error (Piepho et al. 2008). BLUP and best unbiased linear estimation (BLUE) 

solutions to the linear mixed model can be computed using Henderson's mixed model 

equations (Henderson 1984). 

Mean and variances of the plant traits are to be estimated using the available data, with 

maximum likelihood (ML) being the most popular method. Assuming that the phenotypic 

measurements are drawn from a normal distribution, we can calculate the likelihood of  and 
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2 given the data. Maximising the likelihood (or log-likelihood in practice as this function is 

monotonic and easier to perform calculus on) gives us the maximum likelihood (ML) estimate 

of 2. It is known that the ML estimation of variance is biased downwards in cases where a 

finite population is sampled. The bias in ML variance estimation arises due to the loss of one 

degree of freedom required in estimation of each of the fixed effect parameters (i.e. the mean) 

(Foulley 1993). The restricted maximum likelihood (REML) maximises a modified likelihood 

that has no mean component and thus avoids bias. 

In organisms that cannot be clonally propagated and exhibit sexual dimorphism, such as dairy 

cattle, best linear unbiased prediction (BLUP) has been used for decades to select sires with 

the highest estimated breeding values (based on measurements of the offspring from 

previous matings with each sire) to breed superior families (Henderson 1984). For plants, 

BLUP has been deployed to breed for various traits in ornamental carnation and geraniums, 

finding selection based on family indices worked at least as well as individual selection 

(Molenaar et al. 2018). In potato, BLUP was deployed to breed for resistance to late blight 

resistance (Sood et al. 2020). BLUP was also deployed to predict for expansion volume and 

yield and select families in maize (Viana et al. 2011). 

When marker information is available, MAP can be implemented. MAP estimates the 

magnitude of effect of some marker(s) on the trait and estimates the plant trait (in the case of 

a linear models) as the sum of the effect of each marker that an individual has. The Kruskal 

Wallis (KW) test, a non-parametric implementation of ANOVA, tests if samples originate from 

the same distribution and can be applied to each marker to determine if it is associated with 

differences in traits (Broman 2003). The generated H value is to be compared with the KW 

distribution (with an appropriate number of degrees of freedom) to determine a p-value, but 

when the number of groups or individuals are large, computation of the KW distribution 

becomes computationally infeasible. It remains unknown the best method to approximate the 

KW distribution when groups are large (as in the case of field experiments where hundreds 

of genotypes are assessed), but the 𝝬2 distribution is often used as an approximation (Meyer 

and Seaman 2008). 

When marker data are not densely or evenly spread throughout the genome, power to detect 

QTLs in sparse regions falls (Akond et al. 2019). Consideration of QTLs in small intervals, 

using nearby markers increases the power to detect such QTLs and is termed interval 

mapping (IM) (Lande and Thompson 1990). A logarithm of odds (LOD) score measures the 

likelihood that a particular interval is associated with a QTL. A LOD score of 3 is often 

considered evidence of a true marker, but the probability of a false positive is dependent on 

the number of markers, size of the intervals considered and the heritability of the trait. 
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Frequently, an empirical test for significance is performed by bootstrapping with a permutation 

test (Churchill and Doerge 1994). 

A range of GP models have been deployed on both simulated and experimental datasets. 

The first model for GS utilises BLUPs to predict effects of the markers on traits (Meuwissen, 

T. H. E. , Hayes, B. J., & Goddard 2001). Genomic BLUP (GBLUP) utilises the linear model: 

𝒚 =   + ∑ 𝑾𝑞𝑖 

𝑛

𝑖=1

+ 𝒆 

Where y is the observed phenotype,  is the mean, W is the genotypic design matrix, qi is 

the effect of each SNP and n is the total number of markers. The variances of each SNP is 

assumed to be equal. As the number of markers (effects) is typically greater than the number 

of phenotypic records (measurements), the system is typically underdetermined and some 

form of regularisation is deployed to solve the system. Although stepwise algorithms exist to 

select a subset of markers (Habier, Fernando, and Dekkers 2007), this method remains highly 

biased when strongly correlated markers are present. Ridge regression adds  to the least 

squares estimator as a penalty, shrinking the effect size of each marker equally towards 0 to 

overcome the underdetermined system, whilst still using all markers (Piepho et al. 2008). The 

ridge regression parameter controls the magnitude of the penalty and parameterises the 

relative importance of the data-dependent empirical error (Ogutu, Schulz-Streeck, and Piepho 

2012). If variances of markers are assumed to be equal,  is the ratio of the residual and 

marker variances, usually estimated through maximum likelihood methods(Endelman 2011). 

Under this model, when residual errors are large, more shrinkage allows for control of bias, 

and when marker effects are large, shrinkage is reduced to allow for estimation of true 

positives. 

Although most experimental implementations of GS deploy multiple models and assess the 

prediction accuracy of the different models, in general, different models of GS perform 

similarly. Comparison of 11 GP models found that most models generated similar accuracies, 

with slightly better performance when deploying RKHS (Heslot et al. 2012). Comparison of 

GBLUP, RKHS and BayesC for wheat yield showed little difference in selection 

accuracy(He et al. 2016). Comparing three different Bayesian models, no significant 

improvement in selection accuracy was observed (Habier et al. 2011). In strawberry, selection 

accuracies were slightly higher using RKHS than BayesB or GBLUP, but other factors had 

greater effects (Gezan et al. 2017).   

When dealing with polyploids, such as strawberry, markers may be in LD with QTLs on only 

one subgenome. When the resolution to a homeologous subgenome is unclear, the linkage 

of a detected marker to the QTL may be unclear. Although effort has been deployed to 
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generate phasing techniques for polyploids (He et al. 2018), GP has also been deployed in 

polyploids with little modification of models. To evaluate the utility of models, comparisons of 

selection accuracy between models can be made, as well as comparisons to estimations of 

heritabilities of traits. Under a randomised block design, there is assumed to be no genotype 

by environment correlations (Kruijer et al. 2014). 

In order for genomic selection to be viable for commercial implementation, it must be more 

cost effective than the currently employed method. Tools have been developed to perform 

cost-benefit analysis and to optimise resource allocation for implementation of genomic 

selection. Analysis with DeltaGen on a forage breeding population, for example, suggests 

that genotyping for genomic selection approximately doubles the cost, but also nearly doubles 

the increase in genetic gain per cycle when compared to selection without genotypic 

information (Jahufer and Luo 2018). Genomic selection has been experimentally 

implemented in strawberry utilising the IStraw90 Axiom SNP array (Bassil et al. 2015) to 

generate genotypic information. High prediction accuracies were observed for a range of 

agronomically important traits, but it was acknowledged that the cost of the SNP array was 

likely too high for commercial deployment (Gezan et al. 2017). 

There were two main aims in this section. Firstly, based on a biparental strawberry mapping 

population, three between years prediction approaches (phenotype only, tMAS and GP) of 

15 strawberry fruit quality traits relevant to breeders were to be assessed. Secondly, 

biological correlations and efficacy of selection was to be computed. Together, these datasets 

offer models for strawberry breeders on the methods and traits suitable for selection. 

Materials and methods 

The biparental mapping population was used previously for genetic mapping (Antanaviciute 

2016). Briefly, 188 seedlings were raised from a cross between two F. ananassa cutivars 

`Redgauntlet' and `Hapil', of which 120 were randomly selected. These individuals were 

clonally propagated with six replicates in the Autumn of 2015. Additionally, the parental 

genotypes and two check varieties, `Sonata' and `Elsanta', were included in the experiment, 

making a total of 744 individuals. The experiment took place at East Malling Research, at 51 

17'15"N 0 27'12"E. 

Seedlings were distributed in a randomised block design within three tunnels, with three beds 

per tunnel and two rows per bed. Each block was one-and-a-half rows. Seedlings were 

planted in a double row zig-zag 35cm high, 50cm wide with 40cm between plants. Plants 

were allowed to establish over winter and dead material were removed in early 2016 and 

again in May 2016. Irrigation and fertigation was installed and performed according to 

conventional practice. Plants were also sprayed against common pests and diseases 
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according to common practice. Harvesting took place three times a week (Monday, 

Wednesday and Friday) from when the first fruits developed until all fruits were harvested 

(17/06/2016 - 21/07/2016). In each harvest, all ripe fruits were collected from all plants for 

phenotypic analysis, except during the peak season, where only one or two tunnels were 

harvested for logistical reasons; in any week, all plants were harvested at least once. 

Harvesting was initiated in early morning at approximately 05:00 and classed in situ as 

marketable or unmarketable before delivery to a centralised location, where phenotyping of 

other traits took place. 

Phenotypic assessment of the plants took place on the same day as harvest, except during 

peak periods, where assessment took place over the day of harvest and the day after. Where 

assessment took place the next day, fruits were stored at 4 C overnight. Assessment was 

conducted using a modified RosBREED protocol for strawberry, with their standards defining 

the extremes and midpoints of the fruit quality traits where applicable (Mathey et al. 2013). 

Assessment was primarily conducted by J. He and A. Karlstrom with occasional assistance 

from others. For all individuals, examples of phenotypes corresponding with measurements 

on the appropriate scales were demonstrated and agreed before phenotyping took place. 

A total of 15 traits were assessed. Marketable and unmarketable fruits were collected and 

weighed separately for each plant, and summed for all harvests throughout the season. For 

each other phenotype, a single value was generated from assessment of ten randomly 

selected fruits (where available) from the marketable portion of each plant at each harvest, 

except pH, soluble solids, and firmness, where three, twenty and ten fruits were randomly 

selected for analysis over the season respectively. 

pH was measured by releasing a drop of strawberry juice onto a pH meter; firmness was 

assessed by gentle depression of the fruit by a robotic arm and measurement of the 

deformation (Firmtech Umweltanalytische Produkte GmbH). Soluble solids content was 

measured by releasing a drop of juice from a randomly selected fruit onto an interferometer; 

cap size was a visual assessment of the width the cap relative to the neck of the fruit; 

appearance was a visual assessment of the fruit ranging from very malformed to symmetrical 

and attractive; external colour was a visual assessment of the fruit colour; glossiness was a 

visual assessment of the shine of the fruit; achene position was a visual assessment of how 

protruding the achenes were; seediness was a relative measure of the density of visible 

achenes; fruit shape was a visual assessment of the ratio of fruit height to width; neck line 

was visual assessment of the shape of the neck; skin strength was the number of fruits with 

broken skin after ten fruits were rubbed gently with a thumb; and internal colour was the 

relative colours of the inside of the fruit after bisection (Mathey et al. 2013). In addition to data 

collected in 2016, phenotypic data from a previous study on the population from the 2013 to 
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2015 were included in the analysis. The 2013 - 2015 dataset was defined as the prediction 

dataset and the 2016 dataset was defined as the validation dataset. 

DNA extraction for genotyping was performed on single young leaves using the Qiagen 

DNeasy kit according to the manufacturer's instructions. Genotyping was performed using 

the 90K array with genotypes being calculated in accordance to the manufacturer's 

instructions  (Cockerton, unpublished). Filtering was performed on the dataset to remove non-

segregating markers and remove redundant information by maintaining only one instance of 

markers that segregated identically. After filtration, 3436 segregating markers were identified 

and included for genotypic analysis. Genetic rogues, defined as individuals with non-parental 

genotypes or individuals that were genetically identical to apparently other genotypes were 

excluded from analysis. After data filtration, 66297 phenotypic records were used in the 

training dataset and 24908 phenotypic in the validation set, amounting to a 77% and 23% 

data split respectively. 

116 individuals including the parental and check varieties were included for phenotypic 

analysis. To explore the data, the phenotypic values were plotted against the genotypes, with 

the parental and check cultivars highlighted. For all traits, the mean across all blocks in the 

years was computed, except marketable yield and unmarketable yield, where the sum of all 

records were computed, and pH, where the mean of the concentration of hydronium ions was 

calculated, and the result converted to the logarithmic pH scale. The differences in rank of 

the parental strains were also computed. 

In the absence of genotypic data, given the unbalanced data, it is conventional to deploy 

BLUP to predict plant performance. Calculation of the BLUP was performed using the 'lmer' 

command from the 'lme4' package in R (Bates et al. 2015). The prediction model included all 

data from 2013 - 2015, treating the year and blocks as fixed effects and the genotypes as 

random effects. It was assumed that there was no differential interaction effect between 

genotype and block or year. In order to compute a comparable figure for the validation 

dataset, a similar linear model was fitted for the 2016 data, treating blocks as fixed effects 

and the genotypes as random effects. The variance estimation method for both models was 

`REML'. Random effects were extracted from the model using the `ranef' command and their 

Pearson's correlation coefficients were computed using the `cor' function as a measure of 

prediction accuracy. The concordance correlation coefficient (CCC) of the predictions were 

also computed using the `CCC' function from the `DescTools' package (Signorell et al. 2021). 

To estimate correlations between traits, the Pearson's correlation coefficients of BLUPs for 

every pair of traits from the prediction, validation and total datasets were also computed. p-

values under the null hypothesis that the correlations were not different from 0 were calculated 
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and a Bonferroni correction was performed using the number of pairwise tests performed (p 

< 0.05, n = 315). 

103 progeny were included in genotypic analyses. In order to maximise power to detect 

markers associated with QTL, all phenotypic data from all years were included in the marker 

discovery phase. Two methods of marker discovery were implemented: the Kruskal Wallis 

(KW) test and interval mapping (IM). Marker discovery for both methods were conducted 

using MapQTL5 in accordance to the user manual (van Ooijen 2009). The mean of all traits 

were calculated as input for the 'qua' file, except marketable yield and unmarketable yield, 

where the sum of all records were computed, and pH, where the concentration of aqueous 

hydronium ions were calculated. 

For the KW analysis, the resulting H statistic (and their associated degrees of freedom) was 

extracted from MapQTL5 for p value estimation and multiple testing correction. As an 

approximation to the KW distribution, the H statistic was compared to the 𝝬2  distribution with 

the appropriate number of degrees of freedom to yield a p value for each marker being 

associated with a QTL. Computation of the 𝝬2 distribution was performed using the `pchisq' 

function from the `stats' package in R. The Benjamani-Hochburg (BH) correction was applied 

to adjust for multiple testing of markers to control false discovery rate. The critical value for 

false discovery rate was set to an exploratory rate of 0.2. Computation of the BH correction 

was performed using the `p.adjust' function, also from the `stats' package in R. 

For the IM test, significance thresholds were first generated. A permutation test was 

conducted using the `permutation test' function of MapQTL5. 100 permutations were 

simulated for all traits and the 95th percentile of the genome-wide significance levels were 

taken as the threshold for a statistically significant marker. As markers physically close 

together are likely to be in LD with each other as well as QTLs, a simple clustering algorithm 

was implemented to determine if a set of markers with significant LOD values described the 

same QTL. When a LOD peak was identified at a locus, all other markers and intervals were 

scanned from both directions until a marker was identified with a LOD score 2 units less than 

peak. All markers scanned were clustered as describing the same QTL, with the marker with 

the highest LOD score selected as representative of that peak. 

Markers from KW and IM were pooled and used for prediction of plant performance. 

Prediction was calculated as the mean of the trait values estimated by MapQTL5 for a given 

allele for each marker. Prediction accuracy was defined as the Pearson's correlation 

coefficient between the tMAP estimations of the prediction data and the BLUPs of the 

validation data as described previously. Additionally, the CCC between the values was 

calculated. 
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GP was implemented through a two step process. In the first step, BLUPs were calculated 

for the prediction and validation data as described previously. GBLUP was conducted using 

the 'mixed.solve' function from the `rrBLUP' package (Endelman and Jannink 2012). The Y 

and Z matrices were defined as the phenotypic BLUPs and the design matrix of the genotypic 

markers respectively. The predictor of an individual is the GEBV and was defined as the sum 

of all corresponding marker effects of the individual. To evaluate accuracy, two methods of 

prediction accuracies were calculated. The BV BLUP cor method correlates the GEBV of the 

training population with the BLUPs of the validation population and the GEBV cor method 

correlates the GEBVs of the training population and the GEBVs of the validation population. 

 

Results 

To explore the range of data, the mean phenotypic traits of each genotype along with the 

parental and check varieties were plotted. Comparison with traits described in literature may 

be unreliable because the scores of individuals are dependent on their environment. For 

example, the average colour for `Sonata' and `Elsanta' were found to be statistically different, 

but almost indistinguishable to the human eye. Total sugar content in `Sonata' is higher than 

`Elsanta' when fully irrigated, but not statistically distinguishable when under water stress. 

Similarly, `Sonata' contains more total acid than `Elsanta' when fully irrigated, but statistically 

indistinguishable when under water stress (Giné Bordonaba and Terry 2010). 

However, consistent with expectations of a modern cultivar on the market, the marketable 

yield of `Elsanta' and `Sonata' were both high, with `Sonata' being markedly higher than any 

other genotype. `Sonata' scored significantly higher than any other genotype for appearance 

with `Elsanta' scoring moderately. Both check varieties scored highly in glossiness, and skin 

strength, both of which are desirable traits for the market. Moreover, both check varieties 

were significantly firmer than other genotypes, a trait that breeders select for as firmness 

correlates with post-harvest shelf life (Salentijn et al. 2003). `Sonata' is described as 

producing oblate fruits, and this trait is apparent in its low shape and neck line score. 

Interestingly, both check species have relatively low brix values, despite consumers indicating 

sweetness as an important trait and neither have low unmarketable yields. The latter 

observation can be explained as marketable yield and unmarketable yield are correlated and 

commercial cultivars are expected to have high yields. Taken together, the data distributions 

are consistent with known and expected traits of the check varieties, suggesting the 

measured phenotypes are representative of the phenotypes of strawberries. 

In the case of glossiness, achene position and pH, parental phenotypes have a large rank 

difference (> 70), suggesting that the parents have differing alleles controlling the traits, with 
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offspring inheriting heterozygously, displaying intermediate phenotypes. In the case of 

unmarketable yield, appearance, redness, seediness, shape and brix, the difference in rank 

of the parents is small (< 25). The distribution of achene position, shape and internal colour 

shows progeny with marked extremes. This is typical of traits under the control of a few large 

effect QTLs as segregation pyramids those QTLs by chance in a few individuals. Thus, it may 

be expected to identify large effect markers using tMAP for these traits. 

Fifteen statistically significant correlations between traits were identified based on analysis 

using all data. Of these traits, the strongest was between redness and internal colour (0.82), 

followed by neck line and shape (r = 0.51), marketable yield and unmarketable yield (r = 0.50) 

and skin strength and firmness (r = 0.50). 14 of the 15 identified correlations were positive, 

with a single negative correlation identified between firmness and neck line. In order to 

investigate the reliability of correlations between the validation and prediction datasets, 

pairwise correlations of traits were also computed for the prediction and validation datasets. 

The three pairs of traits that had the strongest correlations were consistently correlated across 

years; internal colour and redness, neck line and shape and marketable yield and 

unmarketable yield (Figure 1). In an experiment in Bangladesh, strong pairwise correlations 

were found between total fruit weight, fruit length, fruit diameter and brix values (Mehraj and 

Jamal Uddin 2014). However, in this study, no such correlations were observed. Consistent 

with the correlations observed in previous years (Antanaviciute 2016), a strong correlation 

was observed between redness and internal colour between redness and glossiness and but 

not between cap size and shape. However, no other consistent correlation was observed and 

many fewer correlations were observed in this experiment. This may be due to differences in 

the method for calculating correlations and it is unclear if multiple testing corrections were 

applied for the result of Antanaviciute. 

Correlations and concordances were computed between BLUPs of the prediction and 

validation dataset (Figure 2). High correlations (> 0.7) were found for firmness, neck line and 

redness. Low correlations (< 0.4) were found in glossiness, marketable yield, skin strength 

and unmarketable yield. High concordances (> 0.5) were found for redness and shape while 

low concordances (< 0.2) were found for appearance, firmness, glossiness, internal colour, 

marketable yield, pH, skin strength, and unmarketable yield. 

In the case of traits such as brix and seediness, concordance was similar to correlation, 

indicating the absolute values were similar where there was correlation. In cases such as 

marketable yield, internal colour, pH and skin strength, the concordance was much lower than 

correlation, indicating that even when there was correlation, the absolute values of these traits 

did not match. In the case of marketable fruit, this is likely a reflection of the significant effect 

of environment on the trait; in the case of internal colour, this may be a rater effect. 
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Using IM, one marker for achene position, redness and unmarketable yield each were 

identified, on LG4B at 53.0cM, LG7A 49.9cM and LG1C at 9.9 cM respectively (Figure 3). 

The LOD values for each marker were 3.91, 4.14 and 5.14 respectively, exceeding the 

permutation test thresholds of 3.4, 3.5 and 5.1 respectively. The mean genotypic information 

content for each marker were 0.99, 1.0 and 0.99 respectively, with each marker explaining 

17.0%, 15.5% and 21.0% of the variance respectively. 

Using the KW test, 2 markers on LG3C at 90cM, 4 markers on LG4C at 64cM and 6 markers 

on LG7A at 52cM were identified, all for internal colour. The significance of the markers, after 

controlling for false discovery were between 0.15 and 0.18. Deployment of tMAP generated 

predictions for plant performance. The highest prediction accuracy was for internal colour 

(0.45) with the lowest being for unmarketable yield (0.02). Interestingly, internal colour was a 

trait for which markers were found, consistent with the skewed phenotypic distribution 

described. 

Prediction and concordances of the tMAP model were generally poor. Of the studied traits, 

markers were identified for only four traits. Comparison with a similar genome wide 

association study from a previous study on the same population found no markers for the 

same traits on the same chromosome as identified in this study. More markers were identified 

in the previous study as multiple testing correction did not appear to have been applied. 

Inconsistencies in identified markers across different experiments is common in genome wide 

association studies as markers are only reported when they exceed a critical threshold, 

resulting in overestimation of the effect size (Xu 2003). In order for markers identified in this 

experiment to be deployed in MAS, validation of their predictions should be performed in other 

populations and in different environments. 

Deployment of GBLUP generated GEBVs for all traits (Figure 4). High (> 0.6) prediction 

accuracies could be achieved for cap size, firmness, internal colour, neck line, redness and 

shape. Glossiness, skin strength, marketable yield and unmarketable yield had low (< 0.4) 

prediction accuracies. The highest prediction accuracy was for redness (0.74) with the lowest 

being for unmarketable yield (0.08). The concordances between GEBVs estimated using the 

prediction and validation datasets were close to zero (data not shown). This is likely due to 

significant shrinkage, so slight differences in means between validations and prediction 

datasets would result in lack of concordance. Interestingly, no predictive model performed 

well for unmarketable yield, perhaps due to its low heritability. 

In theory, MAP in this study must be at least as good as phenotype only prediction when 

available information is utilised optimally. This is because the data included in the phenotype 

only prediction models include phenotype data only, whereas the MAP models include 
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identical phenotype as well as genotype information. If there is no relationship between 

marker data and plant performance, then optimal use of MAP ought to be identical to 

phenotype only prediction; any predictive power that the genotypic information has improves 

the model. 

One possible reason that the tMAP models explored here perform poorer than phenotype 

only prediction is the introduction of bias. tMAP performs the poorest of all the models in the 

traits measured. One source of bias in tMAP is the accept/reject nature of marker 

identification, which assigns an effect to markers that fall above a critical threshold, whilst 

rejecting effects that fall below. In this approach, markers with small effects, which together 

may account for a significant proportion of the variation, may not be identified, thus biasing 

the effect of the markers. One expected effect of this, which was observed in this study, is 

that markers for some polygenic traits cannot be identified, making tMAP incapable of 

predicting performance. 

In the cases of most traits, prediction accuracies between phenotype only predictions and 

GEBVs between the training and validation populations are similar. This indicated that there 

is little additional information that genotype data add to make predictions. The results 

presented may underestimate the performance of GP in a strawberry breeding population. In 

a real breeding population, there is potential to leverage a much larger training population 

including individuals that were genotyped/phenotyped in previous years and other locations 

because their relationship with the breeding population is known through shared markers. 
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Figure 1 Correlations of 15 strawberry traits across three years 

 

Figure 2 Phenotype only prediction between years for 15 strawberry traits 
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Figure 3 Concordance and Correlation from tMAP for strawberry traits 

 

Figure 4 Correlations and concordances of three between years prediction methods for strawberry 
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Discussion 

GP models for strawberries have been developed, which supports genetic and varietal 

development. A methodology for cheap and reliable genotyping for strawberry has been 

developed, though this approach lacks experimental validation. Additionally, an automated 

strawberry phenotyping platform has been developed, which aids throughput in breeding 

trials. 

Conclusions 

  With the global population projected to reach nearly 10 billion in 2050, changes 

in the composition of human calorie consumption is needed to ensure sufficient food for all, 

including significant transition to plant based calorie intake (Berners-Lee et al. 2018). GS has 

the potential to increase the rate of genetic gain in breeding efforts and thus contribute 

towards feeding the projected population growth. Strawberries are a valuable commodity that 

are a source of nutrients, notably vitamin C and manganese as well as associated with 

protective effects for cancer and cardiovascular disease. Production and consumption in the 

UK, and the rest of the world are on an upwards trend.  

Commercial strawberry breeding must generate money from its breeding efforts, and while 

the amounts that are generated depend on the nature of the breeding program, it is also 

dependant on the quality of their output, novel strawberry varieties. In this thesis, research is 

presented in three areas to improve deployment of GP in strawberry breeding and thus 

potentially improve the quality of novel strawberry varieties. The automated high-throughput 

3D phenotyping platform increases the precision and reliability of measurement of seven 

strawberry fruit quality traits, which should allow for more accurate GP and reduction of labour 

costs associated phenotyping. Use of objective measurement scales also allows for easier 

interpretation of results. The rational design of amplicon sets for GP attempts to integrate 

parameters likely to be informative for GP in an open, scalable, genotyping system. This 

reduces cost by measuring only the most informative markers and allows scaling of 

genotyping effort dependant on the resources of the breeding program. The deployment of 

predictive models in a biparental strawberry population serves as experimental validation of 

the efficacy of GP in strawberry breeding compared to MAP and phenotype only prediction 

approaches, offering models for breeders to utilise. 

  It appears from simulation studies that genotyping may not be cost effective in 

saving costs associated with maintaining plants in the field, even assuming perfect Mendelian 

inheritance and accuracy, for MAS. This is due to the relatively low cost of maintaining 

strawberries and the high labour and reagent costs associated with performing genotyping 

(Edge-Garza, Luby, and Peace 2015; Wannemuehler et al. 2020). In the case of GS, a large 
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marker panel is required, of which most markers have small or zero effect; indeed, in the case 

of some models such as BayesB, a prior with some proportion of markers with zero effect is 

assumed. The cost of genotyping an individual for GS is thus higher than the cost of 

genotyping for tMAS. Attempts to rationally design a marker set multiplexing the large number 

of individuals in a breeding population to reduce costs is challenging due to poor predictive 

programs for multiplex primer design. Current published experimental validations of GP in 

strawberry utilise one of the available SNP arrays (Gezan et al. 2017; Osorio et al. 2021; 

Pincot et al. 2020). 

In order for a commercial breeding program to benefit from GS, selections at the seedling 

stage are required. This requires almost all traits of agronomic importance to be amenable to 

GP as if some traits cannot be predicted on genomic data, maturation of the plant for 

assessment of those traits is needed. Depending on the breeding programme, over 40 traits 

may be of interest to breeders. Fortunately, there appears to be no experimental evidence of 

a trait that cannot be predicted using GP, though some traits have low accuracies of 

prediction. Note that MAS would not be suitable for a similar speed breeding scheme by 

genotyping and selection at the seedling stage as many traits do not have large effect markers 

that can be identified. Traits of interest in strawberry breeding can be split into fruit quality 

and plant habit traits. The GP model presented in this thesis encompasses almost all the 

traits of interest to strawberry breeders (Mathey et al. 2013), potentially allowing for selections 

to be made prior to fruit development. This would reduce the selection cycle by a few months 

if plant habit traits can be adequately assessed before fruit maturation. 

 If GP allows for increased genetic gain per unit time through reduction of the duration of the 

breeding cycle, then adoption of GP is a binary choice for strawberry breeders. Gradual 

introduction of GP for some traits cannot be performed (as can be envisaged for MAS) as 

shortening of breeding cycle cannot be achieved in these cases. Thus, experimental evidence 

for efficacy of GP in strawberry, as well as availability of datasets must be convincing before 

commercial adoption. Research focus should be targeted towards demonstration of speed 

breeding by ensuring that almost all traits of interest to breeders are experimentally modelled 

with GP.  

Selection of models typically has a smaller effect on selection accuracy than number of 

markers or trait to be predicted, and is not expected to be the primary mechanism by which 

GP improves selection in strawberries. Moreover, if the duration of selection cycles are 

reduced to months (from planting of breeding population to selection), then the days or weeks 

of computation required for the more computationally intensive models of GP (such as 

BayesA) may become significant in speed breeding. Models for cost efficiency of MAP should 
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be extended to account for the potential to remove the growth time for the first stage 

selections under speed breeding and GP. 

Deployment of GP requires most traits of strawberry to be predictable by GP. However, due 

to correlation between traits, selection on individual traits may be inefficient; selection indices 

allow for appropriate weighing of traits that may be correlated. Correlation between traits is 

primarily due to LD between controlling genes and pleiotropy (Pedruzzi and Rouzine 2019). 

Effort should be made to ensure multiple traits of agronomic importance are measured in the 

same strawberry population so these correlations can be quantified to inform construction of 

selection indices. Establishment of selection indices are dependent on the goals of the 

breeding program, but typically combination of traits of agronomic import are non-linear. Often 

there are thresholds that must be met for some characteristics to ensure that a potential novel 

cultivar exceeds performance of some check species, making unpredictable traits particularly 

disadvantageous for GP. If there is a trait that cannot be selected for using GP, or has a low 

accuracy compared to phenotypic assessment methods, loss of prediction for it must be 

compensated for by increases in genetic gain from speed breeding. 

Knowledge and Technology Transfer 

AHDB Student Industry Visit (July 2018) 

Soft Fruit walk, Kent, UK (June 2018) 

AHDB Studentship Conference, UK (November 2017) – Poster Presentation on Genotyping-

in-Thousands as a cost-effective method of genotyping strawberry 

NIAB Student Outreach Event, Histon, UK (November 2017) – Oral and poster presentation 

on 3D strawberry phenotyping 

Current and future applications of phenotyping for plant breeding, Novi Sad, Serbia 

(September 2017) – Poster and oral presentation 

Crops Group Student Symposium, Reading, UK (Nov 2017) 

AHDB Studentship Conference, UK (November 2017) – Oral presentation (TBC) 

NIAB Student Outreach Event, Histon, UK (November 2017) – Oral and poster presentation 

on 3D strawberry phenotyping4th International Horticultural Conference, East Malling, UK 

(July 2017) – Oral Presentation on 3D imaging in strawberry; poster presentation on cost-

effective genotyping for strawberry breeding 

Plant and Animal Genome XXV, San Diego, USA (January 2017) – Received Travel Award 

from AHDB and GCRI to attend conference 
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Tuscon Plant Breeding Institute, Tuscon, USA (January 2017) - Received Travel Award from 

AHDB and GCRI to attend course 

AHDB studentship Conference, Stratford, UK (November 2016) – Oral presentation on PhD 

overview 

Soft Fruit Day, East Malling, UK (November 2016) – Poster presentation on PhD overview 

Grand Challenges in Plant Pathology, Oxford, UK (September 2016) 

Software Carpentry, Norwich, UK (June 2016) 
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Appendices 

Code and data for analysis can be found at the NIAB EMR github repository 

(www.github.com/ organizations/eastmallingresearch/). 
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