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GROWER SUMMARY 

Headline 

To provide automated agronomy support for agronomists at scale using machine/ deep learning 

techniques for yield prediction, from high dimensional spatio-temporal data. 

This approach will reduce costs whilst maximizing specialist human time in areas that require the 

most attention. 

Background 

This work on the augmented agronomist has been undertaken to help focus human time to the 

most vital areas, and act as an arm for agronomists to help locate problem areas in the crop, and 

improve yield prediction earlier than possible before. This system is also being created to improve 

trust, and security around the usually enigmatised deep learning models, and ensure data owner’s 

privacy. 

Summary 

Over the course of this project we intend to complete the following key objectives: 

• Provide agronomists and agriculturalists with yield predictions. This is the primary 

advantage provided by the augmented agronomist system which will provide alerts to the 

operator of deviations from forecasts, and highlight areas where predicted yield potential 

is not on target. This information will enable the operator to focus efforts in areas which 

require most attention in order to maximise yield potential. 

• Create an autonomous data collection system. Hand collecting data at scale would be 

infeasible due to both time and cost investments being too high while also providing 

inconsistent results. We will develop a repeatable and autonomous data collection platform 

so that we can collect spacio-temporal data for yield consistently and at scale. 

• Create a data aggregation and utilization pipeline. This pipeline will be designed to be 

able to handle distributed autonomous data collections, which is the most likely scenario 

faced in practice, such as multiple robots operating and feeding in their data simultaneously 

across multiple sites. 

• Deploy an agronomy assistive neural network to predict plant yield ahead of harvest. 

Ultimately this project will culminate with several other concurrent projects to develop an 

autonomous data collection, and actuation platform (Thorvald), to collect, process, and act 

on the data. 
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Financial Benefits 

According to Berry Gardens Growers (BGG) in 2018 they over estimated crop yield by 17.7% for 

14 weeks of the 30-week growing period and underestimated the remaining 16 weeks by 10%, 

giving them an average absolute error (MAE) of 13.6% for the whole season. Underestimates 

cause surpluses, yield devalue, and subsequently costs by additional disposal of the yield. 

Additionally, over-estimates mean to meet demand, and contracts, growers will need to resort to 

expensive imported fruit, to cover the shortfall. In 2018 this cost BGG roughly 8 million pounds, 

whereas losses to the rest of the industry (70%) are estimated to cost 18 million pounds. 

Current literature of deep learning enabled yield prediction expects an error (MAE) of roughly 15% 

(Konstantinos et al 2018; Maimaitijiang et al 2020). We can already match this and roughly the 

MAE of BGG using purely environmental data. We hope with the additional layers of image data, 

and more granular time series data that we can further improve upon this error, preventing further 

losses. We also hope to reduce the spread of inaccuracy, compared to purely human predictions, 

since human inaccuracy can vary wildly from person to person, and day to day, even if overall it 

gives a cumulative error of 13.6%. 

Action Points 

• There are no action points at this time. 
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SCIENCE SECTION 

Introduction 

Machine/ Deep learning is becoming a bigger and more important part of our daily lives through 

the rise of an ever-increasing quantity of available data. The use of machine learning in 

combination with user data is becoming increasingly widespread and impactful in everyday society 

performing tasks ranging from, natural language processing (Do et al. 2019), image recognition, 

diagnosis (Biswas et al. 2019), detection, classification (Fawaz et al. 2019), medical diagnosis 

(Anderson et al. 2019), self-driving cars (Huval et al. 2015), facial recognition (G¨uera and Delp 

2018) among many other examples. However, one area with which deep learning has remained 

relatively underutilised is in agriculture, where the data is scarce. The existing research has relied 

on classical techniques, and relied on remote sensing datasets and to date has not taken 

advantage of the recent advances such as generative adversarial networks (GANs; Alvarez 2009; 

Chlingaryan, Sukkarieh, and Whelan 2018; Prasad et al. 2006) The primary reason why agriculture 

has not innovated in this area for so long is likely to be the lack of consistent data, but also the 

lack of willingness and trust of the growers/ agriculturalists to release data which could 

compromise their competitive advantage. Thus, if there is little to no data there can be little 

advancement with deep learning techniques, meaning we will likely have to collect our own data 

to find any meaningful relations between the features and targets with which to predict yield 

accurately and far enough ahead to facilitate timely and effective actions. We have access to a 

plethora of data collection possibilities including; through the RASberry project, a collaboration 

between University of Lincoln (UoL), Saga Robotics, and Berry Gardens Growers (BGG), funding 

autonomous strawberry data collection; and through members of the consortium which fund the 

Collaborative Training Partnership Fruit Crop Research (CTP-FCR) studentship programme. The 

involvement of Saga Robotics (SR) allows us to work on a common generic expandable robotic 

platform called Thorvald (Figure 1). Thorvald is an autonomous robot ready for use in many 

terrains and an ideal candidate platform to use for our own data collection and usage system 

thanks to its autonomy, funding, and available resources. The seasonality of strawberry crops 

mean that fruit is only available for harvest between late June to early October in our experimental 

system. 
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Figure 1: Thorvald robot adjacent to strawberry tabletop plantation at the University of Lincoln  

Riseholme campus. This Thorvald is equipped with 3 realsense cameras; RGB, depth, one Raspberry Pi 

Zero, one raspberry pi camera v2, one BME680; temperature, humidity, and air- quality sensor 

Materials and methods 

Initially we had to create a system to be able to attain our data before we could do anything with 

it. This should also serve as the basis of the augmented agronomist. In collaboration with the 

Lincoln Centre for Autonomous Systems (LCAS), and Saga Robotics who produce the Thorvald 

an autonomous data collection platform was developed. 

• The creation of the data collection pipeline is a collaborative process in which this project 

developed security/ encryption, databases, and deep learning the autonomous data 

capture and worked closely with a specialist (Raymond Kirk, 3rd year CTP-FCR PhD 

student) in autonomous robotic control using the robot operating system (ROS), Thorvalds, 

and deep learning. Thus, some of the work reported herein is a result of this collaborative 

effort due to the cross disciplinary skill sets required. The work has been completed in 

several work packages: Data Collection; robotic control, pathing, orchestration, and data 

capture. 

• Data Management; data aggregation/ pipelines, Deployment (dockerisation), MongoDB 

distributed replica sets and networking. 

• Data Processing. 

• User interface for feedback and control. 

• Privacy preservation. 
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Results 

Owing to the volume of work here, and to keep things concise this section will outline first the 

objective and then our findings and methods. There will primarily be a focus only in areas where 

this PhD is principally concerned: 

• Data collection planning; Explore the production system (strawberries grown on tabletop), and 

determine what intricacies the system may have before data collection. An interesting aspect 

was the effect that insects have on the outcome/ yield such as the burrowing of wasps in the 

strawberries and pest damage more broadly. There initially appeared little way to be able to 

predict or account for sudden surges in yield loss due to wasp damage, but we found that 

wasps would only burrow into slightly or completely overripe strawberries (Figure 2). This is 

a direct consequence of poor picking, as any unpicked strawberries over ripen and attract 

wasps, which is something we could potentially see in the dataset, and could reasonably 

predict. 

• Automatically traverse the strawberry tabletop. This is primarily thanks to the work of 

Raymond, that the robot traverses the strawberry tabletop safely and consistently. 

• Automatically and repeatedly collect image data at set intervals down the row from the 

robot. As above. Collect data suitable for as many of our associated project needs as 

possible. For this project the key requirements were environmental factors such as 

temperature, humidity, strawberry images over time, traversal images, irrigation and many 

more. 

• Create sensors appropriate for data collection. Now that we know what data we require we 

could decide upon what sensors and other constituents the system required to gather these. In 

Figure 2: Wasp burrowing behaviour, eating unpicked overripe strawberries, 

which is not immediately apparent as it could easily be mistaken for a ripe 

strawberry 



© Agriculture and Horticulture Development Board 2021. All rights reserved  

the case of this project a need for a sensor to collect temperature, and humidity resulted in use 

of a BME680 which is a small, cheap, I^2c gpio board that integrates well into small ARM boards 

such as the Raspberry Pi. In the absence of accessible GPIO pins on the Thorvald system a 

compartmentalized system for data collection was developed. The many iterations of this can 

be seen in figure 3. The sensors gradually grew in number, and became more efficient with 

regards to space, and power. 

• Store the data locally on the robot platform due to difficulties transmitting large amounts of data 

wirelessly from inside the polytunnels. In previous projects data has been stored as files on the 

filesystem making them difficult to access, maintain, make consistent between multiple 

machines, and are unindexable/ unsearchable, resulting in a lot of wasted time. This project 

used MongoDB, which provides a common database to store all the data captures. 

• Automatically collect intensive image and sensor data from select few plants in the row, 

every 15 minutes, day and night, using a stationary raspberry pi (Figure 4), resulting in 

images depicted in figure 5. 

• Automated data syncing; Now that we have a database system we could use this for near-

realtime data syncing. This makes it possible to do almost live updates, and predictions, 

for immediate problem identification, and response. 

 

As a result of quite some monumental effort to create a system suitable for both the requirements 

of the funding body, and the near-realtime data provisioning of this PhD, we created an automated 

Thorvald data collection platform, gathering many different varieties of spatio-temporal data, while 

maintaining their consistency, availability, and fault tolerance securely. The data collected key 

features such as humidity, temperature, light intensity, RGB images of the strawberry plants and 

fruit from multiple angles, as well as depth, and positional information, to list a few. We have 

employed 3 different data collection methods, including an intensive stationary sensor array to 

capture images and sensor data every 15 minutes of a few select plants to model them more 

precisely. We have also collected continuous capture of images, and sensor data to create sensor-

array-video. Lastly the main data collection uses 20 cm step sampling of the strawberry tabletop 

to model the complex intra-crop environmental changes, which the vast majority of other datasets 

are not granular enough to do. We can pinpoint exactly at which position the robot was during any 

given data point, what its orientation was, and all the associated sensor array readings. 
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Figure 3: Plethora of cameras, and sensors created over the course of data acquisition stage. The majority of 

which had specially designed, and 3D printed protective polyethylene terephthalate glycol (PETG) casings 

which doubled as mounts to be able to attach to the Thorvald robots. PETG is also highly UV and weather 

resistant. 

 

Figure 4: Raspberry pi stationary camera, used separately to the Thorvald robot, used to intensively 

monitor fewer strawberries over a longer period. 
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Figure 5: 4 Raspberry pi stationary camera images, with one enlarged. The latter 2 of the 4 depict 

drooping strawberry stems, from a lack of irrigation. 

 

Data Management 

Data management requires the development of a consistent, reliable, and available method 

to gather data from the pipeline developed above that is potentially distributed between not 

only different Thorvald robots, but also multiple data collection sites. This work package is 

summarised as below: 

• Aggregate the data. One of the primary reasons for using MongoDB during data collection 

was an awareness of the distributed, sharding/ replica set functionality ingrained in 

MongoDB along with its ease of use and security when properly configured (Figure 6). 

MongoDB was found to be capable of automated data distribution such that each robots 

database would synchronise its contents with a larger more powerful network of MongoDB 

shards that was distributed using our Nemesyst framework (Onoufriou 2019a) (Figure 7). 

• Back up the data and add redundancy. Simultaneously to aggregating the data from each 

of the robotic platforms these shards, and replica sets provided guaranteed redundancy 
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should any individual or even multiple datasets fail, with an automatic voting system to 

adjust which remaining replica set becomes the leader/ master. Using a logged database 

such as MongoDB on a simultaneously journaled file-system such as BTRFS or EXT4 

meant that almost any data can be recovered that has been removed, deleted, corrupted 

or otherwise. 

• Make the data accessible to others. Since many other projects are interdependent on 

this data, we implemented a key based user authentication mechanism, along with in 

place encryption, transport layer security, server authentication, replica set cross 

authentication and encryption. 

 

 

Figure 6: MongoDB, and monitoring. This allows us to continuously be aware of the state of the replica 

sets, their load, who is the master/ primary, network traffic, etc. This is an invaluable resource to the 

management of such a system and will provide us with many useful tools to analyse the effects of our 

research on this distributed implementation. 
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Figure 7: Original architecture for data capture, management, control, processing, and feedback. 

 

Data Processing 

Data that now resides in our databases is still raw, and unprocessed, thus we need to 

organise it to make it usable. 

Firstly we “wrangled” the data, which here shall be the process of cleaning, normalising, and 

formatting the data, in such a way as to make it useable by neural networks. To this end we 

created automated wrangling scripts, which can operate continuously since our data can be 

streaming near-realtime at almost any point in time from the fields. 

Broadly this process; turns categorical variables like cardinal wind direction into one hot 

encoded vector, scales data between 0-1 for consistency while also where neural networks 

operate and learn fastest, transform date and time to ISO standard datetime objects, among 

many other data wrangling steps. 

Our first implementation primarily uses environmental factors (humidity, temperature, light 

intensity, etc), and yield (punnets) features to learn the relationships between the environment 

and its consequence on yield. The data was split randomly into training and test sets (70:30), but 

unfortunately due to a scarcity of yield values we could not use a further validation set as this 

would exasperate the effect of this too little data on training our models, leaving them under-

trained. 

Our second more comprehensive implementation which improves upon the first by using spacial 

data like images, along with environmental factors (just like the first), irrigation data, and yield is 
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now specifically in kg to be more consistent than punnets. We continue to use a 70:30 training test 

split, although we are now able to use cross validation with our increased yield data. This is 

still ongoing work, which we hope to have the results of soon. 

User Interface 

The augmented agronomist requires an easy-to-use user interface to allow agronomists to inform 

and direct the neural networks, such as in uncertain, or problematic scenarios. This way we can 

utilize the expertise of the agronomists to improve the neural networks, while also providing them 

with a tool with which to become alerted in places that require their attention, without having to do 

laborious checking. This will maximise their time in only key areas. This will also give us a good 

way to display graphs and other information to the agronomists, such that we can augment the 

agronomists. This is still ongoing to create the full application but an example is depicted in figure 

8. 

 

Figure 8: First example dashboard for uploading, previewing and infering from an uploaded dataset. 

This user interface/ web app will also serve to centralise the algorithms, so they have one 

unified location, to make managing such a complex project easier, while also being a secure 

way to distribute, and collate information. 

Privacy Preservation 

We cannot talk in depth here, as this is ongoing work which is critically novel. However, we 

seek to ensure data collected cannot compromise the data owners, while still allowing data 

to be processed. 

Results and Discussion 

Thus far through the PhD we have collected, and aggregated in our first year pipeline: 

• 35033 rows of weather data, or every 15 minutes for the year following 2019-01-01 

• 23 records for number of punnets produced over the season 
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• 2200 intensive records of strawberry growth in the span of a week, including RGB, 

depth, infrared, location data, environmental data adjacent to the plant. 

• 1503 (in progress annotation of each ripe and unripe strawberry) images every 20cm 

down each row, with the same features as above. 

• 188 top down images of strawberries, with the same features as above. 

• 188 bottom up images of strawberries with the same features as above. 

• 5200 camera footage going down each row. 

In our second year we collected and aggregated a much-improved collection of data 

automatically in spite of coronavirus: 

• 360 records for the wet mass yield of the strawberries of the season, along with associated 

losses due to mechanical, deformation, or disease factors, on a per-row basis. (60.6 KB) 

• 14,500 stationary camera timelapse images, showing growth over select plants 

intensively over the entire season. (32.4 GB) 

• 110,700 images taken in sets of 3 as the robot traverses the tabletop, every 20 cm. 

(460 GB) 

• 25,800 records for environmental factors such as temperature humidity, windspeed, 

etc recorded by the onsite weathervane every 15 minutes, for the whole year of 2020 

up untill the end of the growing season. (5 MB) 

 

Our initial implementation of 3 different neural networks have given us the following resulting 

MEAs: 

 

Table 1: Original/ first neural networks model evaluation, where GRUs significantly 
outperform other recurrent neural networks on this data. 

Neural Network Type Mean Absolute Error (MAW) on Test Set 

Recurrent Neural Network (RNN) 0.208 

Long Short-Term Memory Network (LSTM) 0.293 

Gated Recurrent Unit (GRU) 0.142 
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We are already working on expanding on this implementation with our new complete second year 

data (see: data processing), that is much more granular, consistent, and includes more features 

than previously requiring an overhaul of our previous techniques. We are also layering on image-

based features, which we aim to reduce the MAE to sub 10%. Subsequently we intend to use 

deeper and much more complex neural networks such as Generative Adversarial Nets (GANs) 

to leverage this increased data quantity and quality. 

Lastly we have also begun testing of our privacy preserving methods, and found them to be 

negligibly different in error compared to non-private models and data, although we are not 

prepared to disclose this in great detail publicly yet since it must be critically novel. 

 

Conclusions 

In summary we have created a completely new, distributed, and near-realtime autonomous data 

collection platform so that we can evaluate yield prediction at arbitrary scale. We have iterated on 

our existing database enabled deep learning framework (Nemesyst) with the generalised 

functionality missing that was required for this application, and published a paper on its application 

to a similar problem. We have created the necessary data wrangling and neural network 

predictors which we continue to improve. We are integrating all our work into an easy-to-use web 

application so neural networks can be directed by the agronomists easily. We can already match 

predictive accuracy of pre-existing papers while publishing our own conference paper, and are 

looking to leverage our dataset to surpass the MAE of 10%, to surpass human alone prediction 

consistently. 

 

Knowledge and Technology Transfer  

Towards furthering the science, we have: 

• Further expanded our open source, and permissive, distributed deep learning 

framework for other to benefit from our work (DreamingRaven/nemesyst). 

• Published a journal paper on Nemesyst under similar conditions (Onoufriou 2019a). 

• Published a conference paper on our initial neural network implementation (Onoufriou 

2020). 
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