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DISCLAIMER 

 

While the Agriculture and Horticulture Development Board seeks to ensure that the 

information contained within this document is accurate at the time of printing, no warranty is 

given in respect thereof and, to the maximum extent permitted by law the Agriculture and 

Horticulture Development Board accepts no liability for loss, damage or injury howsoever 

caused (including that caused by negligence) or suffered directly or indirectly in relation to 

information and opinions contained in or omitted from this document.  

 

© Agriculture and Horticulture Development Board 2020. No part of this publication may be 

reproduced in any material form (including by photocopy or storage in any medium by 

electronic mean) or any copy or adaptation stored, published or distributed (by physical, 

electronic or other means) without prior permission in writing of the Agriculture and 

Horticulture Development Board, other than by reproduction in an unmodified form for the 

sole purpose of use as an information resource when the Agriculture and Horticulture 

Development Board or AHDB Horticulture is clearly acknowledged as the source, or in 

accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights 

reserved. 

 

All other trademarks, logos and brand names contained in this publication are the trademarks 

of their respective holders. No rights are granted without the prior written permission of the 

relevant owners.  

 

The results and conclusions in this report are based on an investigation conducted over a 

one-year period. The conditions under which the experiments were carried out and the results 

have been reported in detail and with accuracy. However, because of the biological nature of 

the work it must be borne in mind that different circumstances and conditions could produce 

different results. Therefore, care must be taken with interpretation of the results, especially if 

they are used as the basis for commercial product recommendations. 
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GROWER SUMMARY 

Headline 

Improve strawberry crop yield by embracing automated disease detection powered by 

Computer Vision and Deep Learning. 

 

Background 

The soft fruit industry in the UK is a multi-million-pound industry with demand doubling over 

the past 20 years. With the average price of a punnet of strawberries (400g) costing roughly 

£2 for the same period, representing a real term fall in price. Growers are having to be ever 

more efficient with their crop if this trend is to be maintained. For most of the peak-season 

(April – October) the UK is almost self-sufficient with ~90% of the crop grown under cover to 

extend the season from what is once was (June-July). With the UK consuming 131,000 

tonnes of strawberries between 2018-19 and spending more than £653 million (FarmingUK, 

2019), there is a great need to ensure the crop is healthy in order to meet the demand. Should 

the UK need to rely on imported strawberries it is estimated the price would increase 50% 

with farmers arguing negative impacts on the environment also with transporting the crop 

from mainland Europe and beyond to the UK (Wheeler, 2018) 

With the ever-increasing surge towards automation in the Agri-Tech industry coupled with the 

looming potential shortfall in labour (Doward, 2019), there is an opening for autonomous 

systems for the soft fruit industry. Growers control disease in strawberry crops and extend 

shelf life of picked fruit using a range of crop protection products, however there are ever 

increasing restrictions placed upon what can be used, some herbicides and pesticides have 

been completely phased out due to new regulations. This has left an industry looking to new 

ways to maintain a healthy crop and produce a profitable yield. 

Current crop disease management is accomplished in a very analogue manner with skilled 

agronomists having to painstakingly inspect the crop at a grower’s site, it is hoped that by 

using Deep Learning this work can be made easier by gathering data from the entire crop 

traversed and highlighting areas that may require further attention or intervention. 

Deep learning is a subset of the larger field of machine learning, vast neural networks 

comprised of many layers inspired by the way the human brain processes information, if given 

enough data to learn from a deep learning system can allow a machine to solve complex 

problems. There are deep learning systems everywhere around us, from virtual assistants 
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such as Amazon’s Alexa, Apple’s Siri or Microsoft’s Cortana to vision systems for pilotless 

drones or autonomous vehicles. (Marr, 2018) 

Over the past few years there has been a rapid surge in deep learning coupled with higher 

resolution imaging sensors becoming more readily available at more affordable prices. 

Solutions are becoming available to move towards a more automated management strategy 

to better utilise highly trained staff and deploy them where needed.  

Botrytis alone is thought to be responsible for as much as €10 billion in lost crop globally each 

year, Phytophthora causes crown and root rots in strawberries and can swiftly progress to 

plant death, in turn reducing profitable yield (FungiAlert, 2019) 

Powdery Mildew attacks the leaves, flowers and fruit of the strawberry, and can result in yield 

losses from 20% to 70% of crop potential (Avice M Hall, 2017). It is almost impossible to have 

the plants under continuous surveillance and with the current political climate combined with 

the dropping value of the pound there are less seasonal workers from the EU available to 

monitor, harvest and maintain healthy crops. Estimates of labour shortages as high as  30% 

have been reported on some farms with the Home Office estimating ~80,000 positions 

needed filling in the 2019 season, mostly by workers from other EU countries (Doward, 2019). 

 

Summary 

Using fruit that has been inoculated by three different commonly occurring fruit rot pathogens 

(Rhizopus, Mucor and Botrytis), this project has so far demonstrated the ability to use existing 

deep learning models to detect disease present on post-harvest fruit. This type of detection 

would be useful in a packing environment, checking punnets of fruit as they pass by on a 

conveyor and rejecting those which are potentially unsuitable for sale. Using a state-of-the-

art ‘Mask R-CNN’ model it was possible to achieve 78.54% accuracy for instance detection 

(instance detection not only detects the presence of a class within an image, it also detects 

the individual instances of each class), based on training accomplished with a very small 

amount of data. Classification of disease present in an image of a strawberry was giving 

accuracies of upto 92.05% using an increased amount of data. A dataset of powdery mildew 

has been collected covering the period from inoculation to visual symptoms becoming 

present, this dataset is currently in the labelling stage.  
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Financial Benefits 

Once completed this project will enable growers to monitor their crops more effectively and 

address potential problems before issues spread to neighbouring crops. It may also be 

possible to visually screen fruit as it is packed and help identify fruit that is showing signs of 

infection that may drastically reduce shelf life.  

Action Points 

There are no grower action points at this early stage of the project. 
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SCIENCE SECTION 

Introduction 

Over the years, attempts have been made to use computer vision techniques to detect various 

diseases in strawberry plants and fruit. One such study, by Ayesha and Jani, 2017, used 

images segmented using K-Means clustering before extracting features using Grey Level Co-

Occurrence Matrix, these features were then classified using a Support Vector Machine 

(SVM) and an Artificial Neural Network (ANN). However, no further information is given to 

indicate which classification method performed better. The authors of the paper simply state 

one of the advantages of the SVM is a high accuracy with less training data as opposed to a 

large amount of data that is required for the ANN with the increased complexity compared to 

using the SVM. The authors also state that using a Random Forest Classifier also requires a 

large number of training images compared to the SVM, however it is not clear whether they 

used Random Forests or were simply outlining a difference between the two approaches 

(Ayesha and Jani, 2017). 

Pattern recognition has also been used by Changqi Ouyang et al. (2013) where a 

segmentation algorithm was created utilising heavy pre-processing, mean shift and pattern 

recognition to extract features to use in an SVM. The system was dealing with three factors 

commonly leading to strawberries being out of specification; powdery mildew, shrinkage and 

uneven ripening. The authors used a combination of 12 colour features, 8 texture features 

and 9 shape features. The authors used a three-layer neural network for classification as well 

as a SVM in testing and found that the SVM outperformed the ANN in their experiments which 

led them to favour the SVM for their classification of an ‘out of specification’ strawberry. There 

are no published results for either of the classification methods used however (Ouyang et al., 

2013). 

There is not a publicly available dataset that contains real-world images of strawberry 

diseases and pests in real world environments. Although there are resources such as Plant 

Village, containing 54k+ datasets of plant leaves this dataset is not exclusive to strawberry 

leaves and the images were taken under lab conditions with a homogenous background and 

the leaves are presented face up, all of which is not representative of real world examples. 

Besides this, the current project will be looking at much more than just the leaves, with the 

stems, flowers, fruit and crowns all forming part of the proposed solution. 

To this end the focus of work carried out in the first year of the current study has been 

compiling a dataset of images for disease found on the crop itself in the field due to the lack 



 

 © Agriculture and Horticulture Development Board 2020. All rights reserved  5 

of comprehensive publicly available datasets for strawberry disease and also detection of 

disease found in post-harvest fruit.  

Data collection, and ground truthing (labelling the data), is an essential step that must be 

completed. Any system proposed must be robust enough to handle the differences in cultivars 

used and the vast difference in growing conditions, one such way is to ensure there is access 

to an adequate number of training data to begin with.  

Methods and Results 

Post-Harvest Fruit Data Collection & Inoculation – Trial 1 

Location - NIAB EMR (Kent) 

Aim/Purpose - Understanding the visual differences between pathogens that can 

affect the shelf-life of strawberries. 

Materials used 

• Store bought strawberries with no visible defects 

• 4 trays  

• Paper roll/blue roll to line the trays 

• Clear plastic bags large enough to cover the trays with headroom 

• Tape to seal the bag 

• Camera to capture the images 

Procedure 

Strawberries were purchased from a local supermarket before being placed onto 4 trays at 

random, these strawberries were then inoculated with one of three commonly occurring fruit 

rot pathogens (Rhizopus, Mucor and Botrytis) taken from petri dishes where the pathogen 

had been isolated and incubated on Potato Dextrose Agar (PDA), with a fourth tray being left 

uninoculated (control). The trays were then covered with a large plastic bag and sealed, 

before being stored in ambient temperature (18-20 degrees Celsius).  

After 6 days of storage the trays were then placed into a “fume hood”, and images were 

captured of the trays and the strawberries. 

Images were captured using the rear facing camera of a Huawei Honor 9 with the camera 

settings as described in table 1. 
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Table 1 Camera settings for the rear facing camera of a Huawei Honor 9. 

Camera model STF-L09 

F-stop f/2.2 

ISO Speed ISO-125 

Exposure time 1/50 sec 

Focal length 4mm 

35mm focal length 27 

Resolution 3264x2448 

Colour representation sRGB 

 

Results 

The images collected were labelled and used to train a Mask R-CNN network, the network 

was trained to detect 4 classes, Rhizopus, Botrytis, Mucor and Healthy. Four models were 

trained using a combination of different backbones and weights (as shown in Table 2). 

On average the best performing combination for model selection was the ResNet 50 

backbone with the weights trained initially on the COCO dataset, this combination achieved 

78.54% on a very limited amount of data. 

Table 2. Results from using the Mask R-CNN network on a small dataset of post-harvest fruit. 

Label Instances 

ResNet 50 

(coco 

weights) 

ResNet 101 

(coco 

weights) 

ResNet 50 

(imagenet 

weights) 

ResNet 

101 

(imagenet 

weights) 

Rhizopus 43 92.80% 76.10% 62.52% 56.29% 

Botrytis 52 93.59% 90.12% 76.21% 81.48% 

Mucor 32 94.44% 58.97% 94.44% 60.40% 

Healthy 4 33.33% 0.00% 50.00% 50.00% 

Total 131 78.54% 56.30% 70.79% 62.04% 
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Post-Harvest Fruit Data Collection & Inoculation – Trial 2 

Location - Refrigeration Unit, Riseholme Campus, University of Lincoln 

Aim/Purpose - Obtain data from early stages of infection and determine which 

architecture to use as a feature extractor for post-harvest fruit rot/disease object detection. 

Materials used 

• Store bought strawberries with no visible defects 

• 4 trays 

• Paper roll to line the trays 

• Clear plastic bags large enough to cover the trays with headroom 

• 0.5ml pipets 

• Tape to seal the bag 

• Camera to capture the images 

• Iso-propanol alcohol (95%) to reduce cross contamination risk 

• Lightbox to capture images while limiting exposure to ambient air 

Procedure 

The inoculum was taken from petri dishes using pathogens collected from NIAB EMR in Kent, 

under the guidance of Dr Tom Passey of NIAB EMR. The inoculum was incubated on PDA, 

before being transported whilst kept in a sealed bag inside an insulated “cool/hot” box to 

Riseholme Campus. 

Strawberries were purchased from a local supermarket before being placed onto 4 trays at 

random, each strawberry on each tray was then individually inoculated with one of three 

pathogens, with one tray (control) being mock inoculated with distilled water. 

For each of the three pathogens the inoculum was scraped from the Petri dish and mixed into 

50ml of distilled water, before each strawberry was inoculated by pipette   at three random 

locations on each fruit. 

The trays were then covered with a large clear plastic bag and sealed, before being stored in 

the refrigerator (between 6-8 degrees Celsius). Images were captured on day one, then every 

day from day 3 until day 10, then once more on day 12 when the fruit was disposed of. 

The temperature that the trays were stored in was raised from 7 degrees C to 12 degrees C 

on day 7 as the fruit was not showing obvious visible signs of infection and the temperature 
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was the most readily available variable to change in order to facilitate the growth of the 

pathogens.  

By far the most time-consuming task was the ground truthing/labelling of the images 

collected, a selection of 800 images were chosen and uploaded to servers at 

www.labelbox.com for labelling (LabelBox, 2019). 

The images selected were, 200 from the uninoculated tray day 3 to day 5, 200 from the Mucor 

tray day 9 to day 12, 200 from the Botrytis tray day 9 to day 12, and 200 from the Rhizopus 

tray day 9 to day 12. 

Images were labelled with LabelBox as outlined in the Data Labelling section. Once the 

strawberries had been labelled there was a slight imbalance in the amount of healthy 

strawberries verses each of the other classes (see Figure 1). 

When labelling the data, an annotator creates a mask that highlights the affected strawberry 

and associates that mask with a class, a machine/computer doesn’t know the difference 

between what is a strawberry or what is a tray or anything else, so it’s this spatial information 

that is vital in order to train any machine learning system to distinguish which part of an image 

is of interest.by masking out the highlighted area of an image. The masks created during the 

labelling process will be used for object/instance detection in future work however, for this 

experiment only the class the image belongs to will be used. So instead of the system 

highlighting the individual strawberry and its class, it will instead give a detected class. It is 

anticipated that this will result in lower accuracies considering each image may have other 

strawberries present, however at this stage it is only necessary to determine which model has 

the more robust feature extraction layers and robust performance given these challenging 

circumstances. 

The resulting labelled dataset yielded 1743 instances of which the classes were distributed 

as per the figure 1. 

 

http://www.labelbox.com/
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Figure 1. Distribution of classes amongst the dataset. 

The dataset was shuffled and arranged using a 75/20/5 split before using 6 common 

architectures to classify the images. Each model was loaded from Keras and were initialised 

with the Imagenet weights as the networks were originally trained on more than 14 million 

images (the number of images with bounding box annotations in the dataset 1,034,908), 

whereas the COCO dataset is considerably smaller with 330,000 images. Future work will 

analyse the differences between the two sets of weights on the same dataset. (Lin, Patterson 

and Ronchi, 2019; Stanford Vision Lab, 2019). 

With the pretrained loaded models obtained without the final classification layers, it was 

necessary to add layers to suit the four-class output required in this instance.  

Results 

Each model was then trained for 60 epochs and their performance evaluated over the testing 

set (new data not previously seen, but similar in appearance). Initially the data was passed 

into the model with no augmentation or manipulation other than resizing down to 224x224px. 

However, after training three of the models it was clear that the models were overfitting to the 

training data and the validation accuracy showed this to be the case. Following this result 

new models were trained, again for 60 epochs and this time each image was augmented 

when passed into the model to reduce this overfit. 

From the six original models (Table 3) MobileNet was chosen due to its smaller size and 

performance based upon the initial 60 epochs training. This model was then trained using K-

Fold cross validation (K was chosen to be 7) for 100 epochs, where the input images and 

labels were split using SK-Learn’s method which resulted in a split of ~83/17 for training and 

testing for each fold. 
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Table 3. Summary of the 6 models trained to determine which model to use for feature 

selection. 

Model 
Validation Accuracy 

(%) 

Model size 

(MB) 

DenseNet201 92.05 80.01 

ResNet 50 92.05 98.2 

MobileNet V1 87.5 18.4 

VGG 19 81.82 78.4 

VGG 16 79.55 58.1 

Inception V3 54.55 99.6 

Powdery Mildew Cultivation and Data Collection 

Location - NIAB EMR (Kent) 

Aim/Purpose - To collect images that cover the period from healthy to infected plant 

Materials used 

• Malling Centenary cultivar Strawberry plants x60 

• 5 trays 

• Camera to capture the images 

• Paint brush to transfer the inoculum 

• Paper tags to label the leaves that were inoculated 

Procedure 

Healthy plants were transferred into greenhouse for inoculation. Inoculum was collected from 

plants that were inoculated 7 days prior with the use of a paint brush. 48 plants were chosen 

at random and two sets of leaves were tagged on each plant. Inoculum was transferred to 

the middle leaflet of the tagged leaves. 

Table 4 Camera settings for the Sony DSLR. 

Camera model ILCE-6000 

ISO Speed ISO-100 

Focal length 50mm 

35mm focal length 75 
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Resolution 6000x4000 

Colour representation sRGB 

 

Images (captured using the Sony ILCE-6000) were taken each day of each set of tagged 

leaves for each plant and of the whole plant to capture any infection that may be present upon 

untagged leaves. Ground truth data was collected by recording which plants/sets of leaves 

had visual powdery mildew colonies present.  

Results 

The purpose of this experiment was to gather temporal data for strawberry plants both before 

symptoms are visible and after, with a view to training a deep learning system to detect the 

presence of powdery mildew before obvious visual colonies appear. 

Due to the lack of available inoculum present on the previously inoculated plants 7 days prior 

there was only enough to transfer using the brush method to 34 plants which was on a total 

of 68 leaves (both T1 and T2).  

The results obtained and presented in table 5 show there was a ~57% infection rate from the 

plants that were inoculated. There were also a few plants that had naturally become infected 

with early visible symptoms that were not noticed until the plants had already been transferred 

into the greenhouse. Rather than tag the affected leaves and use these towards the 

inoculated plants, the decision was taken to observe the inoculated plants during the early 

stages of infection to then use this data in the future for early detection. 

Table 5. Resulting observations from the Powdery Mildew Data collection at NIAB EMR. 
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Discussion 

It seems quite clear from the results that there is great potential for the detection of the three 

pathogens (Rhizopus, Mucor and Botrytis) on the post-harvest fruit that has been inoculated.  

The Mask R-CNN model gave 78.54% accuracy in the detection of the instances and the 

segmentation was encouraging given the small number of images used for the training.  

The selection of a model to use for the feature extractors was a good exercise in using the 

currently available toolsets for labelling data and ultimately using this data in a meaningful 

way. The labelling process itself was cumbersome and could be improved, and it is 

hypothesised that by using an additional pre-processing step before classification would 

increase the accuracies further as there would be the opportunity to remove ambiguity with 

multiple classes being present within the same image. The loss function used was 

“categorical cross-entropy”, so the model was assuming there was only a single correct 

answer for each given image however this was not the case in images that had more than 

one strawberry in it. Further experimentation using different loss functions is needed. 

The image augmentation used is also helping to improve the overall accuracy in the initial 

training runs, given the possibility of the system encountering strawberries that could be in 

any given orientation, it was only natural to allow the inclusion of images at various 

orientations and scales, and it is shown in the training curves that it made a noticeable 

improvement and reduced the overfitting of the models. There is a lot of variability between 

epochs which suggest that a lower learning rate would be advantageous in future training. 

The K-Fold cross validation did not provide the expected results, the cause was found to be 

the inclusion of a dropout layer instead of a fully connected layer, the results showed a lower 

overall accuracy for both the training sets and the validation sets. 

In the powdery mildew experiment, there were a few naturally occurring infections on day 

zero from the stock plants, by the end of the experiment the infection rate for the inoculated 

leaves was between 62-66% with 43% of other plants having naturally transferred colonies 

of powdery mildew present (see table 5).  

Transference of the inoculum via the brushing method is effective as is placing test plants in 

proximity of infected spreader plants. It was noted that for the test cultivar (Malling Centenary) 

at least, most infections not only were visible on the top of the leaf, there was also mycelium 

present on the underside of the leaves which was able to transfer to neighbouring plants when 

the trays were placed close to one another.  

1400+ images were gathered from this experiment covering a range of healthy plants to mildly 

infected plants with some leaves showing signs of infection, this data will be useful in 
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determining the early stages of infection. The next stage would be to label all the data to 

enable use for training detection networks with the possibility of generating more data using 

Generative Adversarial Networks to vastly increase the available data and possibly increase 

both robustness and accuracy. 

Conclusions 

• Using a state-of-the-art Mask R-CNN model it was possible to achieve 78.54% 

accuracy for instance detection based on training accomplished with a very small 

amount of data (experiment 1). 

• Classification of disease in an image of a post-harvest strawberries in laboratory 

conditions (experiment 2) achieved up 92.05% for the top performing model, and 

87.5% for the chosen model with the more efficient model in terms of model size. 

• Data labelling is a process that requires optimisation to enable more efficient use of 

collect images.  

• Future work will investigate the estimation of the shape of the leaves to aid the 

detection of powdery mildew where there are not yet visible mycelium present. 

 

Knowledge and Technology Transfer 

To aid the collection of data and to help leverage the collective expertise of Berry Garden’s 

expert agronomists a mobile data collection app is being developed. 

Attended Deep Learn 2019 in Warsaw, Poland and discussed a range of model architectures 

that may be suitable with academics from institutions from around Europe and further afield, 

whilst also learning the current state of the art with regards to model optimisation and size 

reduction.  
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