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DISCLAIMER 

 

While the Agriculture and Horticulture Development Board seeks to ensure that the 

information contained within this document is accurate at the time of printing, no warranty is 

given in respect thereof and, to the maximum extent permitted by law the Agriculture and 

Horticulture Development Board accepts no liability for loss, damage or injury howsoever 

caused (including that caused by negligence) or suffered directly or indirectly in relation to 

information and opinions contained in or omitted from this document. 

 

© Agriculture and Horticulture Development Board 2015. No part of this publication may be 

reproduced in any material form (including by photocopy or storage in any medium by 

electronic mean) or any copy or adaptation stored, published or distributed (by physical, 

electronic or other means) without prior permission in writing of the Agriculture and 

Horticulture Development Board, other than by reproduction in an unmodified form for the 

sole purpose of use as an information resource when the Agriculture and Horticulture 

Development Board or AHDB Horticulture is clearly acknowledged as the source, or in 

accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights 

reserved. 

 

[The results and conclusions in this report are based on an investigation conducted over a 

one-year period.  The conditions under which the experiments were carried out and the 

results have been reported in detail and with accuracy.  However, because of the biological 

nature of the work it must be borne in mind that different circumstances and conditions 

could produce different results.  Therefore, care must be taken with interpretation of the 

results, especially if they are used as the basis for commercial product recommendations.] 
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GROWER SUMMARY 

Headline 

 This project is developing a system to detect indicators of stress in strawberry plant 

physiology using hyperspectral image analysis, a non-invasive technique.  

Background and expected deliverables 

Regular crop inspection by experienced growers and trained agronomists is an essential 

activity necessary to maintain the health and productivity of any crop. When signs of biotic 

or abiotic stress are detected within a crop, there is a high probability that the causative 

stimulus has already had an impact on the productivity of the affected plants and may 

potentially spread to the whole crop depending on what the cause is.  

Finding ways to automatically detect adverse stress would be beneficial to the horticultural 

industry and could lead to a reduction in the volume of fertiliser and pesticides used through 

targeted applications, and early intervention would also reduce the damage caused to the 

crop. The physical parameters of a plant can be measured using automated phenotyping, 

which is an automatic high-throughput process that scans and analyses the physical 

features of a plant. This process decreases the time taken to measure the quantitative 

parameters of a plant, for example: leaf area or chlorophyll pigment concentration. 

Hyperspectral imaging is a recent tool in phenotyping and includes extra colour information 

that cannot be observed by the human eye or a digital camera.  

The aim of this project is to use hyperspectral imaging to analyse and detect the onset of 

stress in strawberry plants in relation to certain diseases, pests or environmental conditions. 

Strawberry plants will be subjected to diseases, pests or drought in order to capture a time 

series of how the plants are responding to these biotic and abiotic stresses. The images will 

be collected using hyperspectral cameras and will include both spatial information, (the 

location of the pixels in the image), and spectral information, (the narrow bands of 

contiguous wavelengths from visible light to near infra-red light). The plants will be imaged 

at East Malling Research (EMR) and the University of Nottingham. 

Once the images have been captured, the strawberry plants need to be identified in the 

images using a technique known as ‘segmentation’. This means labelling objects within the 

image by finding similar properties such as colour, shape or texture. Once the plants have 

been located in the images, the hyperspectral information can then be analysed over time. 

Hyperspectral data contains important information related to physical processes, such as 

the chlorophyll content and the cell structure. For example, during drought the amount of 
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chlorophyll reduces which means a relative increase in light—specifically red wavelengths—

being reflected by the plant instead of being absorbed. 

This work is being done as part of the AHDB Horticulture Studentship scheme, designed to 

train new scientists to work in the UK horticultural industry. The scientist working on this 

project is Amy Lowe who is jointly supervised by Andrew French (University of Nottingham) 

and Nicola Harrison (East Malling Research). 

Summary of the project and main conclusions 

To date, eight strawberry varieties, with three replicates of each, have been grown at EMR 

then transferred to glasshouses at the University of Nottingham for imaging using the 

hyperspectral camera system. This initial dataset is a time series of images from well-

watered strawberry plants through to just-visible onset of drought. The strawberry plants 

were imaged once a day over four consecutive days.  

The images have been segmented using Non-negative matrix factorisation (NMF). This 

uses the hyperspectral information to label the image areas based on the different materials 

in the image. NMF can also discriminate between the leaves, flowers, stamen and 

overturned leaves, for example the matrix factorisation is by parts. When this uses spectral 

information it will identify the signatures within the input matrix. The matrix could also focus 

on features to separate the parts within the image such as the leaf veins.  

Further image analysis techniques will be implemented in 2015 along with analysing the 

data to find stress markers. To build-on and enhance the pilot dataset collected in 2014, we 

will generate new datasets using the hyperspectral imaging system at EMR, with the aim of 

investigating strawberry responses to powdery mildew (Podosphaera aphanis), two-spotted 

spider mite (Tetranychus urticae) and drought.    

In addition, further computational analyses will be undertaken with focus on image 

recognition of individual leaves on the plant and determining the orientation of the leaf to 

build a geometric model of the plant. This will allow analysis on the flat facing leaves and 

also to analyse the same leaf over time.  

Financial benefits 

For this annual report it is not appropriate to undertake a cost/benefit analysis. 

Action points for growers 

 There are no action points for growers at this stage of the project. 
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SCIENCE SECTION 

Introduction 

Current methods for detecting the health and stress of plants 

One way of detecting stress is manually checking the plants for visible signs of stress. This 

involves growers and agronomists regularly checking their plants for symptoms of disease 

or adverse conditions such as drought or nutrient deficiencies. This method is time-

consuming and costly. 

As an alternative, the health of a crop could be automatically measured to increase 

efficiency and reduce costs to the grower. Automated phenotyping is a high throughput 

screening of the plants, measuring the observable properties such as the leaf area and leaf 

pigment content. A plant’s phenotype can be described as observable complex traits 

influenced by the genotype and the environmental conditions (Dhondt, 2013).  

Automated phenotyping can be expensive due to the advanced technology and technical 

equipment needed, although research is aimed at reducing the cost by using low cost 

cameras and phenotyping systems (Tsaftaris and Noutso, 2009). Using a conveyor system 

is not viable when the plants are difficult or impossible to move; instead multiple cameras 

can be used to capture plants as reported on peppers by van der Heijden et al, (2012). 

Hyperspectral imaging is a recent addition in phenotyping technology, which can measure 

extra colour information that cannot be observed by eye or with a standard digital camera.     

Techniques for measuring the health of a crop also include vegetation indices. There are 

indices for detecting specific characteristics which combines the reflectance properties of 

two or more wavelengths; for example normalised difference vegetation index (NDVI) is 

used to detect stress caused by a cereal pest in wheat (Genc et al, 2008). There are over 

150 vegetation indices so far but only a small number have been systematically tested 

(Verrelst et al, 2006). 

Examples of stress signs 

Common examples of causative agents of stress and their associated symptoms in the 

strawberry plants are described in Swift (2011) and include: 

 Powdery mildew caused by a fungus (Podosphaera aphanis) shows some or all of 

the visible indicators: rolling of infected leaves, purplish or reddish blotches on 

leaves, the infected flowers and fruit will have a fine white covering of powder;  
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 Leaf spot is also caused by a fungus (Mycosphaerella fragariae) that creates spores 

and can stunt the growth of the plant. Typical signs are: purple or brown spots on 

the leaves and other areas of the plant; 

 Two spotted spider mite (Tetranychus urticae) is a very small arthropod pest that 

infest a range of host plants. The infestation symptoms include bronze coloured 

leaves and eventually leaf death because the mites pierce cells in the leaves and 

extract the cell contents. If the infestation is severe it can reduce fruit production by 

up to 80% (Livinali et al 2014); 

 A few visible signs of stress due to drought include overturning, curling and lighter 

coloured leaves. 

There are different signs depending on the biotic or abiotic stress involved and the aim of 

this studentship is to determine whether we can detect indicators of stress before these 

signs are visible. This project will use hyperspectral imaging to analyse the spectrum range 

from visible to near infrared wavelengths. Further computational analysis will characterise 

the plants’ ‘healthy’ spectral signatures to then enable the identification of ‘unhealthy’ 

spectral signatures that may indicate a particular stress. This could lead to a new, specific 

index being developed for strawberry crops. 

Hyperspectral imaging 

A hyperspectral camera captures the electromagnetic spectrum in contiguous narrow bands 

of wavelengths. A spectrum will show the intensity per wavelength from short to long 

wavelengths (UV to infrared respectively). 

A hyperspectral image contains spatial and spectral information, which is represented in 

three dimensions. The spatial information is the pixels location along the x- and y-axis and 

the spectrum is the z-axis. This can be visually displayed in a hypercube (Figure 1) where 

pink is high reflectance and black is low reflectance. Each band of the spectrum can be 

displayed as a grey scale image that displays the intensity of the light. Figure 2 shows a 

select number of grey scale images at every 50th band from 1 to 400 along the spectrum 

range of 400nm to 1000nm. 
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Figure 1 –Hypercube of the Fragaria sp.plant cv. Hawaii-4. Left: the RGB image of the cv. 

Hawaii-4 plant where the red box indicates the section that has been imaged. Right: the 

hypercube of the selected area. The x and y axis are the pixels in the spatial location and 

the spectrum is the z axis from green to near infra-red wavelengths. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 –Select greyscale images over the spectrum of cv. Redgauntlet. Redgauntlet 

replicate 1’s hyperspectral images displayed in grayscale images at 50th band intervals over 

the spectrum where the grayscale images are the intensity of the light at a specific band: A 

is 399nm, B is 472nm, C is 546nm, D is 620nm, E is 694nm, F is 768nm, G is 842nm, H is 

916nm and I is 990nm. 
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Healthy leaves and vegetation look green because the leaf pigments absorb most of the 

blue and red wavelengths (~450nm and ~650nm) while most of the green wavelengths 

(~550nm) are reflected back. The red and blue wavelengths are used for photosynthesis 

and creating chlorophyll. When the leaves become unhealthy there is less chlorophyll 

content therefore some red wavelengths are also reflected instead of being absorbed, which 

is why the leaves start to look yellow. In the infrared range, the wavelengths are longer 

which allows them to travel through the leaf to the cell structure, specifically the spongy 

mesophyll (Liew, 2008). More light is reflected back in the Infrared range than in the visible 

range of the spectrum for vegetation; however the human eye cannot see this. Figure 3 

shows the spectral signature of a healthy strawberry cultivar Redgauntlet plant. 

 

 

 

 

 

 

 

 

 

Figure 3 – The spectral signature of cv. Redgauntlet. The blue, green and red sections 

refer to the perceived colouring in the visible range, and the dark red box (700-1000nm) 

represents the near infrared range. The plot shows the reflectance of the light from the plant 

over the spectrum, known as a spectral signature. This data covers the range from 400nm 

to 1000nm and each band width is 1.48nm. 

 

Previous literature on hyperspectral imaging of strawberry plants is limited. ElMasry et al 

(2006) used hyperspectral imaging and analysis to determine the quality of the internal 

attributes such as dry matter content and sugar content. Romer et al (2012) investigated 

early drought stress in cereal using hyperspectral image analysis. The method used is 

simplex volume maximisation (SiVM) which is a matrix factorisation technique that 

calculates the plants spectra in comparison to typical spectra to determine how stressed the 

plant is. This method indicated drought stress four days before established indices and five 

days before visual detection (manual detection).  
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Materials and methods 

A selection of eight strawberry cultivars and related Fragaria species (six replicates of each) 

were grown at EMR and transferred to Nottingham in June 2014 where they were imaged 

with a hyperspectral camera in the laboratory at the University of Nottingham (Figure 4). 

The Fragaria x ananassa cultivars selected were: Elsanta, Elegance, Redgauntlet, Malling 

Centenary, Vibrant and Cambridge Favourite. The species selected were: Fragaria vesca 

Hawaii-4, Fragaria chiloensis BSP14 and Fragaria virginiana RH30. The initial experiment 

involved a time series of the strawberry plants, imaged consecutively over four days from 

‘well watered’ through to just-visible onset of drought. 

The camera at the University of Nottingham captures visible and near infrared (VNIR) 

wavelengths, which has the range 400-1000nm and is comprised of contiguous bands 

where each band is 0.74nm wide with a total of 812 bands. For the drought experiment, 406 

bands were used (where each band covered 1.481nm) to reduce data size and decrease 

capture time. 

 

 

 

 

 

 

 

 

 

Figure 4 – Hyperspectral camera imaging a strawberry plant. The square frame holds the 

camera and the cables so the camera can move and capture the plant. The system has the 

capability to move the camera in the x-and y- axis (where x is left-right, and y is forward-

back) but for imaging the strawberry plants the camera only needs to move along the -y 

axis. 
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Calibration 

When using cameras and lighting they need to be calibrated to make sure that the images 

produced are not interfered with by the lighting or electrical noises. First, covering the 

camera lens or keeping the camera shutter closed records the dark images. Then the dark 

images are analysed to determine the internal electrical noises of the sensor in the absence 

of light. (Robles-Kelly and Huynh 2012) 

A white board (white balance) is also imaged that is designed to reflect 99% of the light over 

the spectrum. This detects the non-uniformity of the illumination. The images can be 

normalised using the white balance to correct for the difference in the illumination. Without 

normalising the data with the white balance, the strawberry plants’ spectral signature would 

appear low in the near-infrared range (Figure 5).This is known to be wrong, because 

healthy leaves reflect higher amounts of light in the near infrared range of the spectrum. 

The wavelengths are longer and the leaf pigment cannot absorb these wavelengths so they 

reach the mesophyll cells and reflect back, only a small portion is absorbed, (Liew, 2008), 

hence, image correction is a necessary step for subsequent analyses. 

To normalise the data, the plant’s spectral signature (Figure 5) is divided by the white 

balance (Figure 6), this produces the final spectral signature for analysis (Figure 7). 

Calibration corrects the spectra’s signature of the strawberry plant, as can be seen in Figure 

7, where there is now high reflectance in the near infra-red section of the spectrum as 

expected. The white balance corrects the reflectance problem in the near infrared because 

there is 99% reflectance through the spectrum. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Cv. Redgauntlet’s un-

calibrated signature over the spectrum 

where each band is the light reflected 

from the plant. 

Figure 6 – White calibration target 

reflects 99% light back per band over the 

spectrum reflection (so the spectrum of 

the light bulbs is shown here). 
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Figure 7– Cv. Redgauntlet’s spectral signature after calibration. The data in Figure 5 is 

divided by that in Figure 6 to calibrate the data.  

Segmentation - Identifying the plants in the image 

The plants need to be identified within the image. This is called image segmentation, which 

partitions the image into distinct regions where the pixels in the same region have similar 

features and if the neighbouring pixels are in a different region then they have different 

features such as: colour, intensity or texture. The regions represent the different labelled 

objects within the image.  

Another feature that can be used is the hyperspectral information. The plant and the 

background have different spectral signatures because they reflect and absorb light 

differently along the spectrum. One approach to segmenting the hyperspectral images 

collected is known as ‘spectral unmixing’, which utilises this effect. 

Spectral unmixing 

This is the decomposition of a mixed pixel into distinct spectra or ‘endmembers,’ and the 

proportion of each endmember within the pixel. An endmember refers to a material such as 

plant, soil or background. If a pixel is identified as pure it means that only one endmember 

is contained in that pixel. Keshava and Mustard (2002) list the three steps for unmixing the 

hyperspectral data: 

1. Dimension reduction (optional); 

2. Endmember selection; 

3. Inversion (proportion of each endmember within the pixel – fractional abundance). 

Steps 2 and 3 can happen together, depending on the algorithm. 

Dimension reduction takes the data and reduces the size by keeping the most important 

information. Hyperspectral data is usually large, so this process would reduce the size of 
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the data and increase the computation speed. For example each plant that has been 

imaged for the drought experiment has the dimensions (552x1004x406) which correspond 

to (y, x, z) respectively. There are over 200 million pixels that need to be processed and the 

amount of pixels would be doubled if there were 812 bands instead of 406 bands. 

The endmember selection step finds all of the endmembers within the input data matrix. 

Then the inversion finds the fractional abundance matrix. Keshava (2003) lists the 

endmember and inversion techniques available 

Spectral unmixing will either use the linear mixture model or non-linear mixture model 

depending on if the data is linear or non-linear. The data is determined to be linear if there is 

a linear combination of the endmembers weighted by the fractional area of each 

endmember in the pixel, i.e. the light interacts with only one component for each distinct 

endmember. The data is non-linear if the endmembers are mixed spatially and smaller than 

the path length of photons in the mixture. The light interacts with different components, as it 

is scattered onto multiple endmembers (Keshava and Mustard, 2002). 

If the wrong mixture model is selected, the proportions of the endmembers within the pixel 

will be significantly wrong. Keshava and Mustard (2002) demonstrates the results of using a 

linear mixture model with non-linear data. 

  

Linear mixture model  

When the light reflects once off the surface of the endmember in the pixel then the 

endmember will have a clear signature. This means that the fractional abundance per 

endmember within the pixel will have a linear relationship and the endmembers abundance 

will sum to 1. A pixel in the observed matrix can be expressed as: 

𝑌𝑖𝑗 = ∑ 𝑊𝑖𝑎𝐻𝑎𝑗 + 𝑁𝑖𝑗

𝑟

𝑎=1

                                                                        (1) 

Where 𝑁 ∈ 𝑅𝑚 ×𝑛 accounts for additive noise. Then Equation 1 can be written as: 

𝑌 = 𝑊 𝐻 + N                                                                                    (2) 

Where 𝑌 ∈ 𝑅𝑚 ×𝑛  is the hyperspectral input data matrix,  m is the number of spectral bands 

and n is the pixels, and 𝑊 ∈ 𝑅𝑚 ×𝑟 is the endmember’s signatures where r is the number of 

endmember’s and 𝐻 ∈ 𝑅𝑟 ×𝑛 is the abundance matrix containing a fraction for each 

endmember per pixel. Also each column of H sums to 1, Tang W. (2012). 
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Non-negative matrix factorisation (NMF) 

The input matrix is decomposed into two lower rank non-negative matrices containing the 

endmember signatures and the abundance fractions of each endmember per pixel. The 

input data matrix is a two dimensional matrix where the pixels spatial location is dismissed 

and the pixels are converted into a matrix to vector alignment. 

𝑌 ≈ 𝑊 𝐻                                                                                      (3) 

Equation 3 uses Equation 2 and follows the linear mixture model. Matrices W and H are 

either initialised using random non-negative values or initialised using Vertex component 

analysis for more robust results (Rajabi and Ghassemian 2014). Also r (number of 

endmembers) is either already known, found using Virtual Dimensionality (Chang and Du 

2004) or estimated/ trial and error. NMF uses a multiplicative update rule to keep the matrix 

values above zero and to minimise the matrices. There are a few update rules that can be 

used. Two examples are Lee-Seung (LS), shown in Equations 4 and 5, and Alternating 

Least Squares (ALS) (see Appendix A). Two minor problems with the update rules are that 

LS slowly converge and ALS can reach local minima and diverge (Soltuz et al 2009). 

𝐻 = 𝐻((𝑊𝑇𝑌) ./ ( 𝑊𝑇𝑊𝐻))                                                (4) 

𝑊 = 𝑊((𝑌𝐻𝑇) ./ ( 𝑊𝐻𝐻𝑇))                                              (5) 

∑ 𝐻𝑟𝑛 = 1

𝑟

𝑟=1

                                                                             (6) 

Equations 4, 5 and 6 are the ‘LS’ update rule used in Berne (2013) and Tang. (2012).  After 

the first iteration the estimated matrices are tested for convergence using equation 5. This 

update continues until the matrices converge or the input iteration number is exceeded. The 

input data matrix (Y) and the estimated data matrices (WH) are compared to check the 

difference per pixel and if the convergence is below a certain value (i.e. <0.0001) it will stop. 

Frobenious norm, Equation 7, is a popular minimisation equation however other equations 

can also be used. 

 

1

𝑛
||𝑌 − 𝑊𝐻||

𝐹

2
                                                           (7) 

However there may not be a unique solution since WH = (WD)(D-1H) for any nonnegative 

invertible matrix D which is explained in Jia S. (2009). This General NMF can be improved 

using sparseness and smoothness constraints. 
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Results 

Cvs. Redgauntlet (replicate one, day two) and Hawaii-4 (replicate three, day one) were 

chosen to illustrate the successful application of NMF for finding the endmembers and 

abundance matrices.   

Before testing how well the NMF works, the spectral signatures need to be found in the 

original images in order to compare the spectra (Figures 9 and 10). 

 

 

 

 

 

 

 

 

 

Figure 9 –Spectral signatures of strawberry leaves. The average reflectance value per 

square (left) is collected using FIJI, which is ImageJ (Schindelin et al, 2012), and then 

plotted in MS Excel (right). This displays the spectral signatures of the leaves to display the 

difference. The difference can be due to shadows and lighting since the lights did not reach 

the same intensity near the sides.   

 

 

 

 

 

 

 

Figure 10 – The spectral signatures of the endmembers from the original hyperspectral 

images. The signatures are taken from the original data (after calibration) to compare with 

the NMF’s estimated signatures. They were collected in FIJI and plotted in MS Excel.  
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Two repetitions of NMF using cv. Redgauntlet 

With NMF, the endmember number either needs to be known or estimated. Applying NMF 

to the whole image stack will classify differences in the background as well as the plant. The 

matrix factorisation will separate endmember signatures depending on how different they 

are. NMF will be repeated twice, the first NMF is with two endmembers to find the plant and 

background. Then using just the plants information, NMF will be applied again with three 

endmembers to find the leaves, soil and stolon.  

The reason the background is being removed first is to not blend in with other parts of the 

plant, such as the stolon. This technique only uses the spectral information and disregards 

the spatial information. By removing the background, the analysis is concentrated on the 

important sections of the image.   

NMF 1 – Two endmembers  

 

 

 

 

 

 

 

 

Figure 11 –NMF 1 using two endmembers produces the endmember signatures plotted 

(left) and the abundance matrix (right). Left is the spectral signatures produced by the NMF 

when two endmembers are the input parameter. Right is an image displaying the highest 

value endmember per pixel. 

 

NMF produces two matrices W and H where W is the endmembers’ spectral signatures 

(Figure 11 - left) and H is the abundance matrix (Figure 11 – right) however it is slightly 

modified to display the endmember in the pixel with the largest value, in a colour map. For 

the actual H matrix, the images are displayed in Figure 12. 
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Figure 12 – Endmembers’ intensity images and colour maps of the abundance matrix. Top 

left is Endmember 1 intensity image and top right is the colour map. Bottom left is 

Endmember 2 intensity image and bottom right is the colour map. If the image pixels are 

white/light grey then it is a part of that endmember, likewise if the pixels are black/dark grey 

then it is not a part of the endmember. The colour map displays a scale.   

 

Mask for NMF2 

The mask is created from the plant endmember 1 from the abundance matrix in NMF1. By 

setting the threshold value of endmember 2 (Figure 12, bottom right) to 0.5 this eliminates 

the background. This is because NMF1 only has two endmembers and there is a distinct 

difference. The plant endmember is used as the input matrix for NMF2. The mask is a 

logical matrix where the red is true and the blue is false (Figure 13). This means that once 

the new matrices are created from NMF2, this mask will be used to recreate the image.  
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Figure 13 – A mask to keep the plant and disregard the background. This is a logical matrix 

with red pixels holding true values and blue pixels holding false values.  

NMF2- Three endmembers  

After removing the background NMF can now be applied to the plant endmember (and soil).  

 

 

 

 

 

 

 

 

Figure 14 – Plot of endmembers (W) using three endmembers for the second NMF. The 

endmembers’ spectral signatures are plotted in a graph to show the three endmembers.  
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Figure 15 –The abundance matrix H represented in images. Top left is the intensity image 

for endmember 1 and top right is the colour map, middle left is the intensity image for 

endmember 2 and middle right is the colour map, bottom left is the intensity image for 

endmember 3 and bottom right is the colour map.  
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Figure 16 – A colour map of the endmembers. The endmember in the pixel with the largest 

value becomes the pixel and this is represented in a colour map where light blue, yellow 

and red are endmembers 1, 2 and 3 respectively. 

 

Figure 16 is the abundance matrix but displayed as one endmember per pixel where the 

endmember with the highest value in the pixel is displayed as that endmember. However 

the pixel could be 0.49 endmember 1 and 0.51 endmember 2, this is just to visualise the 

endmembers together in one image. A good comparison of this would be to apply NFINDR 

and then compare the two images. NFINDR finds the pure pixels and not mixed pixels 

where NMF covers pure and mixed pixels but usually if the endmember is pure the pixel will 

probably still have a small amount of the other endmembers by the way the matrices are 

multiplied.    

 

Hawaii-4, replicate-3, day 1 

This analysis with cv. Hawaii-4 (replicate 3) will include the background because there are 

flowers in the image and applying a two endmember NMF would remove the background, 

partial leaves and also the flowers.  

First Hawaii is going to be analysed with NMF using two endmembers, then three 

endmembers and finally six endmembers. This is a trial and error analysis to see what 

happens and also because the number of endmembers is currently estimated. From visually 

looking at the image there are definitely two different endmembers: ‘background’ and ‘plant’. 

Also referring to Figure 17 the flower visually has a different signature and the soil as well. 

The amount of endmembers can be calculated using Virtual Dimension and other 

endmember detector algorithms which are currently being tested.  
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Figure 17 – The True endmembers’ signatures collected from the data using FIJI. The  plot 

shows the endmembers’ signatures using FIJI to collect the average intensities and MS 

Excel to normalise and plot the data.   

 

 

 

 

 

 

 

 

 

Figure 18 – A Greyscale and RGB image of cv. Hawaii-4 replicate 3, day 1 of the drought 

experiment. The left image is a greyscale image and the right image is an RGB image.   

Two endmembers 

This is NMF using two endmembers which will produce two endmember signatures and an 

abundance matrix containing two columns (corresponding endmember abundance).  
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Figure 19 – The endmember signature matrix (W) and abundance matrix (H) with two 

endmembers. The top graph is the endmember signatures for two endmembers, middle left 

image is the intensity values in the endmember 1 row of H matrix and middle right image is 

the corresponding colour map. Bottom left image is the intensity values in endmember 2 

and bottom right is the corresponding colour map. 
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Figure 20 – A colour map displaying the highest value endmember per pixel. The 

endmember with the highest value in the pixel is displayed in the pixel. The colour map 

displays the division of the two endmembers. Part of the overturned leaf and the petals are 

being classified as the background. 

 

Three endmembers selected for NMF 

This time three endmembers will be selected to see what happens. If the endmember 

number selected is below the minimum amount of endmembers then the estimated 

signatures produced from the NMF will combine together. This is partly why they will not 

look like Figure 17’s true signatures.    

 

 

 

 

 

 

 

Figure 21 - Endmember signatures of matrix W using three endmembers. The 

endmembers spectral signatures are plotted in a graph. Endmember 1 represents the 

leaves, Endmember 2 represents the background and Endmember 3 represents the 

soil/underneath the plant. 
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Figure 22 - Abundance matrix H with three endmembers can be visualised as three 

greyscale images where each image is focused on a different endmember. Top left is the 

intensity value image for endmember 1 and top right is the corresponding colour map. 

Middle left is the intensity value image for endmember 2 and middle right is the colour map. 

Bottom left is the intensity value image for endmember 3 and bottom right is the colour map. 

 

From looking at Figure 21 the three endmembers appear to be: endmember 2 is the leaves; 

endmember 3 is the background and partially the flowers; and endmember 1 is the 

soil/underneath the plant. There appears to be some crossover as the leaves are blending 

in with endmember 1 and 2.   
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Figure 23 – The endmember with the highest value in the pixel is displayed in the pixel. The 

colour map displays the division of the three endmembers. 

 

The largest endmember value in each pixel can be represented in Figure 23, however the 

difference could be so small that another NMF would display that pixel as a different 

endmember. Figure 22 are images from the actual abundance matrix produced from the 

NMF.  

 

Overturned leaves 

Although overturned leaves are not displaying as an endmember in the abundance matrix 

with the highest value pixel becoming that endmember (i.e. Figure 23) there is visually a 

difference of 0.1-0.2 on the colour map in Figure 24. No analysis has been performed yet to 

test if the overturned leaves can be found using this technique.    

 

 

 

 

 

 

Figure 24 – Endmember 2 greyscale image showing the intensity of the light. The colour 

map is the right image showing the scale from 0 to 0.8. No analysis has been performed yet 

to detect overturned leaves.  
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Figure 25 – Three colour maps produced from six endmember NMF to show the intensities. 

Left image displays the soil and shadows endmember. Middle image displays the 

background prominently with the overturned leaves in the middle of the range bar. Right 

image displays the flowers. 

Six endmembers 

NMF with six endmembers resulted in three noisy endmembers and three endmembers 

displaying the background, soil/shadows and the flowers. There are too many images and 

graphs produced as more endmembers are selected. Therefore Figure 25 only displays 

three colour maps which are for three of the endmembers. 

The amount of endmembers needed was estimated for this report; however the actual 

number of endmembers will be used in the future using Virtual Dimensionality. By 

estimating the amount of endmembers, it showed how the non-negative matrix works in 

finding the endmembers, and when a smaller number is chosen the other endmembers 

combine. For example, in the cv. Hawaii-4 section in Figure 19 the plant and soil are 

combined into one endmember, however when three endmembers are selected the soil is a 

separate endmember (Figure 22 – endmember 3). This happens with the flowers; in the 

sections with two and three endmembers the flowers are classified with another 

endmember however in Figure 25 when six endmembers are selected the flowers are a 

separate endmember.   

Discussion 

The image analysis using NMF produces two matrices, where W contains the endmember 

signatures and H contains the abundance proportions of the endmembers per pixel. This 

separates the data into meaningful information that can be analysed once NMF is improved. 

Firstly, by looking at the endmember signatures for cvs. Redgauntlet and Hawaii’-4, the 

results produced by NMF’s W matrices are similar to the spectral signatures taken from the 

original images using FIJI. There are small differences between the manually calculated 
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spectral signatures and NMF’s estimated spectral signatures for example cv. Redgauntlet 

displays a dip in the background’s signature which is not in the original data, this is also 

present with cv. Hawaii-4 background signature. The estimated signatures can be tested 

against the true signatures for accuracy. 

However NMF is not that effective at segmenting the images. When the image contains just 

a simple background and the plant then it is easy to distinguish them apart, as 

demonstrated for cv. Redgauntlet, however in the segmentation for cv. Hawaii-4, the 

presence of flower petals led to the misclassification of the petals as background. This is 

because there is no spatial information being used. Finding the plant first and then applying 

spectral unmixing will be more useful because the analysis can be applied to the leaves, 

petioles or flowers rather than on the pixels disregarding the location.  

Segmentation using shape-based techniques such as active contours are currently being 

developed and implemented. Also segmentation techniques using features such as the 

veins are being developed.  

The objectives for year 2: 

 New data collection at EMR with different diseases and pests (powdery mildew, two 

spotted spider mite and drought) using varieties that have both similar and dissimilar 

phenotypes;  

 Continue implementing different shape-based segmentation techniques and focus 

on the features; 

 Identify the leaves and orientation to build a geometric model of the plant; 

 Analyse the plants over time using the hyperspectral information to detect changes. 

Use Spectral unmixing techniques by improving NMF and also using a simplex 

based algorithm.  

 

Conclusions 

NMF separates the original images into meaningful data that includes the spectral 

signatures and the corresponding abundance fractions, which can be improved by 

initialising W and H using Vertex component analysis (VCA) and also by using extra 

constraints on the algorithm such as smoothness and sparseness. 

However, NMF ignores the spatial location of the pixels and classifies part of the plant with 

the background especially if the background is noisy or includes other plants. Therefore 

shape-based segmentation is needed before applying NMF or other unmixing techniques. 
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Knowledge and Technology Transfer - 2014 

- Study visit to EMR June-July 2014 to collect data and transfer strawberry plants for 

the drought experiment. 

- Visit to Hugh Lowe Farms, June 2014, with Marion Regan, industry representative 

for this studentship. 

- AHDB Horticulture conference 16-17 September 2014, poster session and tour. 

Awarded 2nd Prize in the poster competition. 

- Poster presented at the International Workshop on Image Analysis Methods for the 

Plant Sciences (IAMPS, Aberystwyth, September 2014) 

- EMRA/AHDB Horticulture Soft Fruit Day 26 November 2014 at EMR. Dissemination 

of progress in this studentship through a poster exhibition to both industry and 

academia. 

 

Glossary 

Endmember – An endmember refers to a material such as plant, background, soil etc. 

Endmember signature – the material’s reflected light over a selected range of the 

spectrum, for this project the range is from visible light to near-infrared light.  

Hypercube – All of the hyperspectral bands collected together to represent a 3D image 

where the first two dimensions are the pixel location and the third dimension is the 

hyperspectral information (wavelength bands over the spectrum).  

Hyperspectral – narrow contiguous bands of light (wavelengths) over a spectrum 

Projection (mentioned in VCA’s definition) – This is a mathematical term which 

transforms the points and lines onto a plane, which is then treated as a two dimensional 

surface.  

Non-negative Matrix Factorisation (NMF) – This refers to an algorithm that takes the input 

data (image) with non-negative values and produces two matrices. The first matrix contains 

the endmembers signatures and the second matrix contains the proportion of each 

endmember per pixel. 

Vertex Component analysis (VCA) – This algorithm finds the minimum number of 

endmembers in the data by projecting all of the pixels in a random direction and the largest 

projection is considered as the endmember. This is repeated to find all of the endmembers 
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and each new endmember is compared with the previous endmembers to make sure they 

have not already been found.  

References 

Berné O, Boulais A, Deville Y, Joblin C, Pety J, Teyssier D, Gerin M, (2013) "NMF-based 

spectral unmixing of Herschel observations of the horsehead nebula", Proceedings of the 

5th Workshop on Hyperspectral Image and Signal Processing (WHISPERS 2013), 

Gainesville, Florida, USA, 25-28 June 2013. 

Chang, C. I., and Du, Q. (2004). Estimation of number of spectrally distinct signal sources 

in hyperspectral imagery. Geoscience and Remote Sensing, IEEE Transactions on, 42(3), 

608-619. 

Dhondt, S., Wuyts, N., and Inzé, D. (2013). Cell to whole-plant phenotyping: the best is yet 

to come. Trends in plant science, 18(8), 428-439. 

ElMasry, G., Wang, N., ElSayed, A., and Ngadi, M. (2007). Hyperspectral imaging for 

nondestructive determination of some quality attributes for strawberry. Journal of Food 

Engineering, 81(1), 98-107.Genc, H. et al (2008). Vegetation indices as indicators of 

damage by the sunn pest (Hemiptera: Scutelleridae) to field grown wheat. African Journal of 

Biotechnology, 7(2). 

Jia S and Qian Y (2009) “Constrained Nonnegative Matrix Factorisation for Hyperspectral 

Unmixing” IEEE transactions of geosciences and remote sensing, Vol 47, No 1, pg 161-173, 

January 2009.  

Keshava, N. and Mustard, J. F. (2002). Spectral unmixing. Signal Processing Magazine, 

IEEE, 19(1), 44-57. 

Keshava, N. (2003). A survey of spectral unmixing algorithms. Lincoln Laboratory 

Journal, 14(1), 55-78. 

Liew, O.W, Chong, P.C.J.; Li, G.; Asundi, A.K (2008) Signature optical clues: emerging 

technologies for monitoring plant health. Sensors 2008, 8, 3205–3239 

Livinali, E., Sperotto, R. A., Ferla, N. J., and Souza, C. F. V. D. (2014). Physicochemical 

and nutritional alterations induced by two-spotted spider mite infestation on strawberry 

plants. Electronic Journal of Biotechnology, 17(5), 193-198. 

Rajabi, R., and Ghassemian, H. (2014). Spectral Unmixing of Hyperspectral Imagery Using 

Multilayer NMF. 

Robles-Kelly, A., and Huynh, C. P. (2012). Imaging spectroscopy for scene analysis. 

Springer Science & Business Media, pg14 



 Agriculture and Horticulture Development Board 2015. All rights reserved 27 

Römer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C. and Plümer, 

L. (2012). Early drought stress detection in cereals: simplex volume maximisation for 

hyperspectral image analysis. Functional Plant Biology, 39(11), 878-890. 

Schindelin, J.; Arganda-Carreras, I. and Frise, E. et al. (2012), "Fiji: an open-source 

platform for biological-image analysis", Nature methods 9(7): 676-682. 

Soltuz, S. M., Wang, W., and Jackson, P. J. (2009). A hybrid iterative algorithm for 

nonnegative matrix factorization. In Statistical Signal Processing, 2009.SSP'09.IEEE/SP 

15th Workshop on (pp. 409-412). IEEE. 

Swift C.E (2011) Strawberry Diseases, Colorado State 

University.http://www.ext.colostate.edu/pubs/garden/02931.html [accessed: 16.02.15] 

Tang, W., Shi, Z., and An, Z. (2012). Nonnegative matrix factorization for hyperspectral 

unmixing using prior knowledge of spectral signatures. Optical Engineering, 51(8), 087001-

1. 

 

Tsaftaris, S.A. and Noutsos, C. (2009) Plant phenotyping with low cost digital cameras and 

image analytics. In Proceedings of the 4th International Symposium on Information 

Technologies in Environmental Engineering. Berlin: Springer, pp. 238–251. 

 

van der 

Heijden G, Song Y, Horgan G, Polder G, Dieleman A, Bink M, Palloix A,vanEeuwijk F, Glas

bey C (2012) “SPICY :towards automated phenotyping of large pepper plants in the 

greenhouse.” Functional Plant Biology 39, 870–877. 

 

Verrelst, J., Koetz, B., Kneubühler, M., and Schaepman, M. (2006).Directional sensitivity 

analysis of vegetation indices from multi-angular Chris/PROBA data. In ISPRS Commission 

VII Mid-term symposium (pp. 677-683). 

 

 

 

 

 

 

http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html
http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html


 Agriculture and Horticulture Development Board 2015. All rights reserved 28 

Appendices 

Appendix - A 

Alternating Least Squares (ALS) equations: 

𝐻𝑛+1 = (𝑊𝑛
𝑇𝑊𝑛)−1(𝑊𝑛

𝑇𝑌)                                                           (𝐴)   

𝑊𝑛+1 = 𝑌𝐻𝑛+1
𝑇 (𝐻𝑛+1

𝑇 𝐻𝑛+1)−1                                                           (𝐵)   

The matrices may not be non-negative because of the inverse. After equation A and B if W 

or H (pixel values) are less than zero make that pixel zero otherwise keep the current value. 

(Soltuz, 2009) 

 


