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GROWER SUMMARY  

Headline  

Automatic detection and learning for post-harvest operations in conveyor belts.  

Background  
Conveyor belts are core components in horticulture, where produce must be selectively 
discarded or reorganized.  The need of tailored systems discourages solutions based on 
common data collection and labelling, as well as vision systems based on known object 
features.  

Summary  
Often, workers need to operate on conveyor belts, selectively picking objects based on 
visual features following inspection. We devise a novel framework to learn from existing 
human labour, without need of explicit data gathering or labelling. The framework 
autonomously detects, tracks and learns the visual features of salient objects in conveyor 
belt-based systems. The system trains entirely through visual observation of human labour 
and achieves detection accuracy of over 97% on a set of 7 different objects after only 10 
minutes of operation  

Financial Benefits  
The potential financial benefits arise from two main prospects: first, the possibility of 
maintaining high productivity even when manual labour work force is lacking; second, the 
increase in efficiency and transferability (no need to train re-train labour force) possible 
given the potential in high precision solutions delivered by robotics platform, and their ability 
to work over regular work hours.  

Action Points  
Partial or incremental integration of the system in current pipelines would be needed. The 
product, however, needs to be tested in real-world settings before doing this.  
 
 
  



    Agriculture and Horticulture Development Board 2020. All rights reserved   2  

SCIENCE SECTION  

Introduction  
 
Conveyor belts are core components in horticulture, where produce must be selectively 
discarded or reorganized.  Some workers in fruit packaging or redistribution facilities, for 
example, would stand by a conveyor belt, while selectively picking out produce which 
seems damaged or not up to market standards; others, instead, might inspect mechanical 
components to discard defective items. 
In many such scenarios workers may be working in closed off environments, with noise 
level exceeding 85 dB [1], at times with acidic smells coming from vinegar based solutions, 
rooms with temperatures lower than -20C, to preserve produce for as long as possible [2], 
[3], and/or low-lighting conditions [4]. More importantly, conveyor belt system tasks are often 
repetitive and they are cause of many injuries, first amongst many: arm and hand injuries, 
cuts and scrapes, burns and abrasions and bone fractures [5]–[7]. In such cases it is 
desirable to find automated solutions, where robotics systems can be employed to work in 
human-unfriendly environments. 
The automation of conveyor-belt based systems in industrial settings has persevered for 
over 40 years [8]–[10]. In the last two decades there have been a number of robotics and 
Machine Learning solutions aimed at fully automatizing the industry. Work in visual servoing 
has been amongst the most active research areas [11], with solutions spanning from visual 
tracking to robot control [12]–[14].  
 
  

 
Figure 1: Scene observation and item identification framework. 

 
 
The advancement in robotic gripper mechanisms has also boosted automation [15]. More 
recently, advancements in material science and robotics gave way to the advent of soft-
robotics and soft robotics grasping mechanism [16], revolutionizing picking and 
manipulations tasks for a wider variety of tasks, such as picking garbage from a garbage 
disposal facility [17] or grasping soft fruit objects [18], [19]. The majority of the work, 
however, is aimed at mechanical or robotics solutions capable of detecting known objects, 
picking or manipulating them within the conveyor system. In several industrial scenarios, 
instead, the intervention on the objects needs to be selective. In a fruit factory, for example, 
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the labour’s task might be that of removing defective produce, while in a garbage disposal 
factory, the task might be to separate objects into different containers depending on the 
materials that compose them. In these scenarios it is first necessary to learn the labour 
operational task, to recognize and detect salient items to be acted upon. 
 
The automation of the selective detection of items from a conveyor belt, based on task 
understanding, is a most useful step forward towards the full automation of conveyor belt 
based systems. We argue that, to be applicable in industry, a solution should have three 
features: first, it should need minimum data, and fast learning and retraining procedures, to 
limit transferability issues when re-using the same system in a different industry; second, it 
should ideally need no explicit data gathering and labelling, as it would otherwise be 
necessary to create a specific labelled data-set for each scenario, even within the same 
industry, limiting the portability and usability of the system by many users with ease; third, it 
should reach human-level selective item detection and identification accuracy, thus 
providing an advantageous substitute to current labour in such applications. It is also 
desirable for the framework to perform objects detection without any prior knowledge of 
object-dependent features, else a new vision-based solution must be devised for different 
scenarios. 
 
We devise a novel framework to autonomously detect and track salient objects in conveyor 
belt-based systems. Through the use of two cameras it is possible to track elements in the 
belt which were acted upon by the labour, and learn without any explicit labelling or 
supervision to detect salient objects in future scenarios, based on the observed labour’s 
task. Furthermore, a deep-network architecture is devised to cope with learning from 
streaming data, while maintaining the ability to generalize well for oncoming streams. 
  

 

Materials and methods 

 

 
Figure 2: The Observer and Learning architecture of the developed framework 

 
We develop a framework capable of learning to detect and select objects through visual 
observation of skilled labour. The system was designed to learn from minimum training 
data, need no explicit data gathering and labelling as conventional deep-network 
frameworks, and reach a human-like levels of accuracy in the detection and identification of 
salient objects. The framework developed is composed by a vision system and a deep 
learning system running on a local workstation, and is summarized in Fig 1. The vision 
systems is composed by two cameras and an object detection and tracking module. The 
system’s role is that of observing and analysing human intention within the conveyor belt 
area. The cameras, namely the anterior and posterior cameras, are placed in two different 

Anterior Camera 
Detection Module 

 aCDM  

Observer and  
Labelling Module 

  OL
 

Posterior Camera 
Detection Module 

pCDM   

Learning 
Module 

DAT 
LABELS 

INFERENCE 
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locations within the same conveyor belt system (Fig. 1). The anterior camera captures an 
area of the conveyor belt which was not affected by human intervention, whilst the posterior 
camera captures an area of the belt where human labour has already intervened. By 
comparing the analysis of the same conveyor section, prior and post human intervention, it 
is possible to localize the areas of the belt which were affected by human input. 
Fig. 2 shows the framework’s architecture. For each camera there exists a detection 
module, namely the Anterior Camera Module or aCDM, and the Posterior camera module or 
pCDM, whose role is that of localizing every object within its field of vision. The detections 
for each camera are sent to an Observer and Labelling Module or OLM, which compares 
their visual feeds to annotate those objects which were influenced by human intervention. 
The camera captures aCDM, together with additional information supplied by the OLM, can 
then be fed to a Learning Module, which trains to recognize which objects in the conveyor 
belt needed to be picked from at the time when they were observed in the anterior camera. 
All through the run, the Learning Module can make inferences on which objects need 
intervention and improve over time by observing human labour. 

 

Figure 3: The Figure shows the set-up for the experiments 

 

A. Camera Set-Up 
Within the framework it is important that the two cameras’ visual fields do not overlap i.e. 
each visual field should either be prior or post human intervention, but in no in-between 
state. Moreover, a stationary assumption is necessary, i.e. the position of an object within a 
conveyor belt is assumed not change except due to external perturbations (e.g. human 
intervention). In most scenarios, this can trivially be held true with small changes the belt 
system. 
Figure 3 shows the set-up developed to validate the framework. Two low-cost Logitech 
C270 webcams are used, capturing visual feeds at a maximum of 30 fps, and at a resolution 
of 640x480 px. The two cameras are set-up 90 cm apart, facing directly downward a 
custom-made conveyor belt unit. The conveyor belt component has a 130 x10 cm flat upper 
surface, hosting a belt moving at a speed of approximately 50 cm/s. 
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B. Object Detection and Tracking 

 
Figure 4: The figure shows an example detection by a CDM. (a) The sample I(i) captured frame, (b) the 

corresponding M(i) Gaussian probability mask, with higher intensity indicating pixels with higher probability of 
being part of the foreground and (c) generated 

 
1) Camera Detection Module: Both the aCDM and the pCDM modules need to be able to 
detect unknown items within their field of vision. It is here desirable to devise an object  
 

 
Figure 5: The figure shows the image reprocessing steps before learning. From a sample I(i) frame, a (b) 

binary mask B(i) is created. The mask is used to (c) frame the objects, and finally (d)-(e) a number of images 
equal to the number of objects is created, where the objects are cropped, rotated and padded from I(i) to 

become ready for learning. 

 
extraction technique which does not rely on any context-dependent visual features, 
otherwise an ad-hoc visual tracking solution must be tailored for different scenarios in each 
industry. First, it is necessary to make a motion assumption, i.e. we assume that if an object 
is placed on the conveyor belt, and is within the visual field of either the anterior or posterior 
camera, it must change its relative position to the cameras over time. As any one object will 
be in motion when the belt is operational, this will trivially be true for most systems. A 
foreground-extraction object detection and tracking algorithm is then devised, based on the 
Gaussian Mixture-based Background/Foreground Segmentation Algorithm background 
subtraction [20]. 
 
For each camera detection module, there is a stream of captured frames. Consider  the ith 

captured frame of the aCDM, and  the ith captured frame of the pCDM. Each frame is a 
640x480x3 RGB array sampled at constant time intervals tr, here tr = 0.03s. The progress of 
i is therefore consistent with the time lapsed since the start of the system. For the sake of 
notation the a and p subscripts are dropped when the methods apply to both the anterior 
and posterior camera detection modules. 
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At each time interval i, a binary mask B(i) is generated, corresponding to the foreground of a 
captured I(i) (Fig. 4). A Gaussian mask M(i) can be computed as: 

  M(i) = GMM(I(i))  (1) 

where GMM is the foreground extractor functions implemented in [21], based on the 
Gaussian Mixture-based Background/Foreground Segmentation Algorithm in [20] and [22]. 
Here, M(i) is a 640x480 array, where each element corresponds to the probability that the 
corresponding pixel within I(i) belongs to the foreground (Fig. 4a and 4b). The foreground of 
certainty is thus extracted, or B(i) = M(i) == MAX(M(i)) where B(i) is a 640x480 foreground binary 
masks (Fig. 4c). When the motion assumption previously mentioned holds, pixels within 
moving objects will naturally have low probability of being part of the background, and thus 
will generally be present within the extracted foreground. 
 
2) Observer and Labelling Module: The OLM module’s role is to compare two frames 
corresponding to the same sliding conveyor belt section, prior and and post human 
intervention. The comparison allows for the detection of those objects within the belt which 
were influenced by the system. 

At time i, the OLM module can observe any captured 
frame I(j) and binary foreground B(j) from the anterior and posterior camera modules, for j <= 
i. Two binary images corresponding to the same sliding section of the belt are thus 
compared, where for each  extracted at  is observed, where: 
 

 

    (2) 
 
and ts is the time necessary for an object to pass from the centre of the anterior camera’s 
field of view to the centre of the posterior’s. Given the stationary assumption, if any one 

detected object in Ba is not present within d pixels from the centre of its corresponding 
location in Bp , it can assumed the human operator has influenced the state of the object, 
and a label can thus be generated. The d parameter is arbitrary although we argue that, 
should the stationary assumption hold true, the centre of the object should not move any 
more than the radius of the circle circumscribing it. 
 
 
C. Deep Learning System 
The Learning Module developed for the system is based on a CNN Architecture re-designed 
to be able to deal with streaming, “on-line”, data. Each data point, then, is always to be 
considered a new, unseen, sample. Moreover, retraining on all the previously seen samples 
is impossible, if training and inference are to happen in parallel to the running of the 
Detection Modules, and the number of data points can grow unconditionally. We introduce 
and implement three main concepts, to allow the network to deal with the above issues: 
object framing, batch buffering and sliding window. 
 

1) Object framing: As the aCDM and pCDM modules monitor the conveyor belt, one or 
more objects can be detected simultaneously in each I(i) at time i. For the CNN to be able to 
learn the visual features corresponding to each object, it is necessary that each object is: first, 
separated into a different input; two, made comparable to other objects. To achieve this, for 
each I(i) the minimum circumscribing boxes containing the binary blobs detected in the 
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corresponding mask B(i) are found (Fig. 5a, 5b and 5c). The area in the image within the box 
is then cropped, rotated and padded to re-shape each input array into a comparable size and 
format (Fig. 5d and 5e). 

 
2) Batch buffering and sliding window: With streaming data, like any other data-set, it is 

necessary to discourage over-fitting. It is here possible to use a procedure similar to batch 
training, by buffering the re-shaped objects from I(i) to I(j) for j = i − ι, and training on objects 
extracted from the batch, rather than from single new images. Parallel to the concept of batch 
buffering is every how often to train on the buffered images from the past. If batch-training on 
every single incoming image, the same image will be seen by the network at least ι times, 
and thus over-fitting is possible for large ι. 
 
We set a stride parameter ξ, which corresponds to the minimum number of time steps i 
necessary for the network to re-train on the current buffer (Fig. 6a).  
 

3) Architecture and training: The Convolutional Neural Network Architecture designed is 
composed of two convolutional layers, two pool layers, a normalization layer and two fully 
connected output layers, as shown in Fig. 6b. All units perform a ReLu non-linear  
 
 

 
Figure 6: The CNN architecture and data streaming feed for learning. 

 

 
Figure 7: The figure an example (a) capture Ia for j = i −   and (b) capture . The green boxes correspond to the 
minimum circumscribing boxes containing the blobs detected in  and  (Fig. 4c). One of the two detected objects 
in the aCDM is not present in the poster posterior camera module, thus the object will be marked as influenced 

by human operations. 

 
transformation [23]. We train the network with the RMSProp adaptive learning rule [24], where 
the weighted gradient for each weight w at time i is: 
 

    (3) 
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  (4) 

Here, S(i) corresponds to the weighted average of the square sum of gradients up to i, and  
is a value to prevent division by zero, set to 1e−10 throughout the experiments. The learning 
rate η and the decay hyper-parameter β are set to respectively 0.0001 and 0.9, two known 
good values for the adaptive learning rule [24]. The error is computed as a regularized 
softmax cross-entropy with logits on the classes absence (0) versus presence (1) of the 
object in the posterior camera’s view. 
 
  
Results  
  
To test the developed framework the belt system is run, together with the aCDM, pCDM, 
OLM and Learning module concurrently, on a set of unknown objects. The chosen objects 
resemble fruit items and are shown in Fig. 8. Three separate tests are performed: object 
detection, autonomous on-line learning and framework analysis. The performed tests 
consist in the continuous operation of the conveyor belt described in Section III-B1, while 
placing the objects in Fig. 8 in line in the anterior’s camera’s field of view, selectively picking 
them in the human operational area, and after reaching the end of the belt finally removing 
and reinserting the objects in the belt, in various positions and orientations (see Video 
attachment). 

A. Object detection 
To test the ability of the aCDM and pCDM modules to detect objects The conveyor belt 
system is run for a total of 15 minutes. For each incoming frame, the binary mask is 
computed as described previously, and the minimal circumscribing boxes are detected (Fig. 
7).  

 

 

 

 

Figure 8: The objects used for the experiments. 

                          

TABLE I: The Table reports the detections when 
testing the system on ≈ 15 minutes of conveyor belt 

operation. 

 
aCDM Correct 
Detections (TP+T   
aCDM Incorrect 

Detections (FP+FN   
pCDM Correct 
Detections (TP+T   
pCDM Incorrect 

Detections (FP+FN  
 

 

 
No. of frames 3008 

frames 
 Accuracy 97.67% 
pCDM Accuracy 97.63% 

 

 

By comparing the detected items in the aCDM (Fig. 7a) and pCDM (Fig. 7b) it is possible to 
identify which items have been removed in the human operational area. 
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After manually labelling the aCDM and pCDM recordings, it is possible to rate the accuracy 
of the detection system in detecting all objects in the aCDM and corresponding missing 
objects in the pCDM (Table I). An object is successfully recognized if the distance between 
its detected and labeled centre is within a range smaller or equal to the radius of the circle 
circumscribing the object. 
 
As shown in Table I, the system is capable of detecting items with over 97% accuracy over 
4187 objects processed within 3008 frames. The mis-detections where mainly due to the 
GMM object tracker, at times misled by largely varying light during testing. For each object 
detected by the aCDM, however, it was always possible to detect its presence or absence 
at posteriori, after human intervention. 

 

B. Autonomous On-Line Learning and Parameter Tuning 
To investigate the influence of both the batch buffer size ι, and the stride parameter ξ to the 
learning, the conveyor system is operated for 15 minutes, and the task is set to be the 
removal of object 2 (Fig 8). While data is being streamed from the aCDM and pCDM 
modules, the learning systems learns to recognize those objects which are removed in the 
Human Operational Area. 
 
Figure 9 shows the inference error and accuracy observed during the conveyor belt 
operation in the experiment, when learning with varying buffer sizes. The buffer size 
parameter has a strong influence in the ability for the learning framework to prevent over-
fitting, with larger buffers preventing over-fits to the last seen image captures, and thus 
inducing more stable learning. On the other hand, larger buffer sizes does not allow fast re-
learning to support online streams. We set ι = 100, since no noticeable differences were 
observed in the learning curve for buffers larger than 100 processed frames (Fig. 9). 
Figure 10 shows 3 learning curves when learning with varying window strides. The stride 
has an effect both on the number of times the same frame is seen by the network during 
training, and the speed of learning. Training for every unseen new frame from the aCDM is 
undesirable, since for a large ι over-fitting is likely. Too large strides might not allow the 
network to change its weights enough to account for unseen frames. We pick ξ = 5, reaching 
the lowest error during the experiments (Fig. 10). 

 

 

Figure 9: The figure compares the moving (a) error and (b) accuracy when testing the framework with different 
batch buffer lengths ι. Larger ι values prevent over fitting, thus resulting in more stable learning. 
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Figure 10: The figure compares the moving (a) error and (b) accuracy when testing the framework with 
different stride values ξ. Lower values show higher longer training curves. 

  

 
TABLE II: Test error and accuracy during 5 minutes of continuous streams, and after 10 
minutes of on-line training. 
 
C. Framework Analysis 
To thoroughly test the framework three separate test runs are performed, each on a 
separate task: one, removal of the object 1, two removal of object 2 and three removal of 
object 7 (Fig. 8). 
 
We use the best performing batch buffer and window stride sizes validated in the previous 
sections, i.e. ι = 100 and ξ = 5, and test the accuracy of the network during 5 minutes of 
continuous streams, and after 10 minutes of on-line training. The errors and accuracies are 
reported in Table II. 
 
The features relative to object 7 were easier to learn than object 1 or 2, as shown by the 
higher testing accuracy and error in Table II. The framework reaches stable top 
performance after ≈ 250 time steps, equivalent to less than 5 minutes of belt operation. The 
framework is shown to be capable of selectively detecting and identifying objects, both 
influenced by human operations and not, with an average accuracy of over 97% on all 
tasks. 

 

Figure 11: Running accuracy of the framework during 
testing. 

 

   

TABLE II: Test error and accuracy during 5 
minutes of continuous streams, and after 10 

minutes of on-line training. 

Objects Erro
r 

Accuracy (%) 

1 (pear) 0.23
83 

97.26 

2 (black 
grape) 

0.21
24 

97.93 

7 (banana) 0.19
66 

98.58 
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Conclusions  
We develop a novel framework to selectively detect and recognize salient objects within a 
conveyor belt. The framework is capable of learning through observing human labour, and 
thus needs no explicit data-gathering and training. The adaptability of the framework to 
various conditions is shown, by purposefully applying object recognition and learning 
solutions which are feature independent, and thus transferable. We test the framework on a 
set of unknown objects, which are placed on a custom-made conveyor belt, and selectively 
picked by a human operator. The system based on the proposed framework is capable of 
observing human operations and autonomously learning which objects need to be acted 
upon prior to reaching the human operational area. 
 
Given the GMM-based object detection, object clutter is currently unsolved. Future work will 
be aimed at augmenting the aCDM and pCDM modules to detect objects in the presence of 
clutter (or object overlap). 
The framework is developed for ease of integration in existing industry environment. 
Conditional to some basic assumptions, the learning and vision system can run in the 
background and learn task-specific selective item detection and identification through 
observation of skilled labour in new environments. No labelling is necessary for the training 
of the system, and the supervision is supplied seamlessly by the labour, performing the 
usual required tasks. This work is a step forward toward the full automation of conveyor 
belt-based systems in non human-friendly environments. 

Knowledge and Technology Transfer  

• L. Scimeca, F. Iida, “Self-Supervised Learning Through Scene Observation for Selective Item 
Identification in Conveyor Belt Applications”, in Annual Conference Towards Autonomous 
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