SCEPTREPLUS

Final Trial Report

Trial code:	P1901288 (SP50)			
Title:	Broad-leaved weed control in legumes			
Сгор	Vining peas and green beans.			
Target	3road-leaved weeds			
Lead researcher:	Jim Scrimshaw			
Organisation:	PGRO			
Period:	March 2019 to September 2019			
Report date:	September 2019			
Report author:	Jim Scrimshaw			
ORETO Number: (certificate should be attached)	384			

I the undersigned, hereby declare that the work was performed according to the procedures herein described and that this report is an accurate and faithful record of the results obtained

19th March 2020

Saint

Date

Authors signature

Trial Summary

Introduction

Due to the loss of important active ingredients to control broad leaved weeds in vining peas and dwarf green beans it has become imperative that effective alternative materials are identified that may be suitable for future EAMU or full approvals in the future.

In 2019, a single replicated trial was conducted near Middleton-on-the-Wolds in the East Riding of Yorkshire to evaluate treatments in vining peas. A similar trial was conducted at the PGRO 2019 trial ground at Stubton, NG23 5DA in green beans.

Methods

The vining pea trial was established in a commercial crop of vining peas which was drilled on 14 May 2019. Green beans were drilled using a GroMo plot drill on 15th May 2019. Treatments were applied at the timings indicated using an AZO compressed air plot sprayer using HYPRO yellow 110° nozzles at 2.0 bar delivering 200l/ha and giving fine to medium quality spray. Weed counts were carried out using a 1/3m² quadrat and three quadrats per plot were assessed on each assessment date. Phytotoxicity was assessed if possible.

Results

Peas:

No phytotoxicity seen. No efficacy data to report.

			20.6.19		3.7.19			17.7.19		
			1st trifoliat	e	Badly graze	ed		Few beans		
Treatment	Rate	Timing	GERDI	Phyto	GERDI	SONAS	VERPE	GERDI	SONAS	VERPE
1. Untreated			0.0	2.5	0.0	7.0 a	25.3 a	0.5	12.5	45.3 a
2. AHDB9917	0.7l/ha	Α	0.0	2.5	0.0	1.8 b	4.8 bc	0.0	5.8	16.0 bcd
3. AHDB9917	0.7l/ha	С	0.0	2.0	0.0	5.5 ab	24.8 a	0.3	8.8	44.5 ab
4. AHDB9917	0.35l/ha	А	1.3	2.3	2.0	4.3 ab	20.3 ab	4.3	10.0	38.8 abc
5. AHDB9917	0.35l/ha	С	0.0	2.0	0.3	5.0 ab	29.3 a	0.2	9.5	44.8 a
6. AHDB9898	1.0 l/ha	A	6.0	2.5	3.5	2.0 ab	0.5 bc	7.0	8.8	0.5 d
7. AHDB9898	1.0l/ha	В	1.8	2.0	0.5	1.5 b	0.5 bc	0.0	10.8	3.8 d
8. Aclonifen	2.0I/ha	A	25.3	1.5	25.0	2.3 ab	11.5 abc	19.5	8.8	27.8 abcd
9. AHDB9987	2.0I/ha	А	27.8	0.8	24.3	0.8 b	0.0 c	23.8	3.8	0.5 d
10. AHDB9987	2.0I/ha	В	16.0	2.0	9.0	4.8 ab	4.5 bc	13.8	13.8	11.0 cd
			no significa	ant control co	ompared to th	he untreate	ed p>0.05			
			significant	significant weed control compared to the untreated p>0.05			eated p>0.05			

Green beans:

Conclusions

The low weed numbers and/or species that emerged in both pieces of work limit the conclusions that can be drawn.

All treatments appeared to be crop safe in both pea and green bean trials, but nothing of statistical significance can be drawn from the pea work regarding weed control due to low levels of weeds. The uneven emergence may have masked some treatment effects as past PGRO work has identified aclonifen as a material that can significantly affect emergence.

Where significant control of weeds was seen in the green bean work pre-emergence AHDB9917, pre and early post emergence sprays of AHDB9898 and applications of AHDB9987were the most promising and worthy of further investigation.

Objectives

Identify active substances with potential for broad-leaved weed control in legumes and evaluate their efficacy in vining peas and dwarf french beans

Trial conduct

UK regulatory guidelines were followed but EPPO guidelines took precedence. The following EPPO guidelines were followed:

Relevant EPP	Variation from EPPO	
PP 1/152(3)	Design and analysis of efficacy evaluation trials	None
PP 1/135(3)	Phytotoxicity assessment	None
PP 1/181(3)	Conduct and reporting of efficacy evaluation trials including GEP	None
PP1/091(3)	Weeds in Phaseolus and Pisum'	A single trial of each was conducted at each site.

There were no other deviations from EPPO guidance.

The following were also used for reference: PGRO SOP's E1 version 12 (receipt and storage of chemicals), E2 version 7 (measuring samples of chemicals), E3 version 8 (trial site and layout), E6 version 10 (recording data), E12 version 8 (statistical analysis),

Test site for peas

ltem	Details
Location address	Wold Dyke Farm, Middleton on the Wolds, East Riding of Yorkshire, YO25 9DA (Grid Reference SE92814913)
Crop	Vining peas
Cultivar	Vining peas: Boogie
Soil or substrate	Clay Loam
type	
Agronomic practice	Conventional
Prior history of site	

Trial design

Item	Details
Trial design:	Randomised complete block

Number of replicates:	4
Row spacing:	15cm
Plot size: (w x l)	2m x 5m
Plot size: (m ²)	10m ²
Number of plants per plot:	1100
Leaf Wall Area calculations	

Test site for green beans				
Item	Details			
Location address	Beeswax Farms, Stubton, NG23 5DA (Grid Reference SK884496)			
Crop	Dwarf green beans			
Cultivar	Lomami			
Soil or substrate	Clay Loam			
type				
Agronomic practice	Conventional			
Prior history of site				

Trial design

Item	Details
Trial design:	Randomised complete block
Number of replicates:	4
Row spacing:	20cm
Plot size: (w x I)	2m x 10m
Plot size: (m ²)	20m ²
Number of plants per plot:	900
Leaf Wall Area calculations	

Treatment details

AHDB Code	Active substance	Product name/ manufacturer s code	Formulation batch number	Content of active substance in product	Formulatio n type	Adjuvant
AHDB9917	N/D	N/D	N/D	N/D	N/D	-
AHDB9898	N/D	N/D	N/D	N/D	N/D	-
-	Aclonifen	Emerger	EV56008883	600 g/l	SC	-
AHDB9987	N/D	N/D	N/D	N/D	N/D	-

Application schedule

Treatment number	Treatment: product name or AHDB code	Rate of active substance (ml or g a.s./ha)	Rate of product (I or kg/ha)	Application code
1.	Untreated			
2.	AHDB9917	N/D	0.7 l/ha	A
3.	AHDB9917	N/D	0.7 l/ha	С
4.	AHDB9917	N/D	0.35 l/ha	А
5.	AHDB9917	N/D	0.35 l/ha	С
6.	AHDB9898	N/D	1.0 l/ha	А
7.	AHDB9898	N/D	1.0 l/ha	В
8.	Emerger	N/D	2.0 l/ha	А
9.	AHDB9987	N/D	2.0 l/ha	А
10.	AHDB9987	N/D	2.0 l/ha	В

	Vining Pea	Vining Pea	Green	Green	Green
	Application	Application	Bean	Bean	bean Application
	^		Application	B	C
Application date	14 th May	31 st May	22 nd May	20 th June	27 th June
	2019	2019	2019	2019	2019
Time of day	Mid-day	11.30am – 12.00	Mid-day	10.00am – 10.15am	10.25 – 10.35am
Crop growth stage (Max, min average BBCH)	BBCH:000	BBCH: 11- 12	BBCH:001	cotyledon	1 trifoliate
Crop height (cm)	0	3-5cm	0	5cm	10cm
Crop coverage (%)	0	5%	0	10%	15%
Application Method	Spray	Spray	Spray	Spray	Spray
Application Placement	Soil	Soil	Soil	Soil	Soil
Application equipment	Azo plot sprayer	Azo plot sprayer	Azo plot sprayer	Azo plot sprayer	Azo plot sprayer
Nozzle pressure	2 bar	2 bar	2 bar	2 bar	2 bar
Nozzle type	HYPRO 110 yellows	HYPRO 110 yellows	Hypro 110 yellows	Hypro 110 yellows	Hypro 110 yellows
Nozzle size	0110 015	0110 015	0110 015	0110 015	0110-015
Application water volume/ha	200 l/ha	200 l/ha	200 l/ha	200l/ha	200l/ha
Temperature of air - shade (°C)	19ºC	18ºC	15°C	16 °C	16ºC
Relative humidity (%)	40%	80	52%	60%	
Wind speed range (m/s)	0.9 m/s	0.9 – 2.2	0 - 0.9	1.8 – 3.1	Gusty applied between gusts.
Dew presence (Y/N)	No	No	No	No	No
Temperature of soil - 2-5 cm (°C)					
Wetness of soil - 2-5					
Cloud cover (%)	5%	40%	90%	70%	95%

Application details

- At Middleton-on-the-Wolds soil pH was 8.0, P, K and Mg indices were 2 (24.2mg/l), 1 (104mg/l) and 1 (47mg/l) respectively. Organic matter content was 6.3% and soil type is clay loam (27% sand, 47% silt, 26% clay).
- At Stubton soil pH was 7.4, P, K and Mg indices were 2 (15.6mg/l), 2- (174mg/l) and 2 (81mg/l) respectively. Organic matter content was 4.5% and soil type is clay loam.

Assessment details

Assessments were carried out to evaluate the weed control properties of the treatments and whether they caused phytotoxic effects on the crop. Third of a metre squared quadrats were placed randomly in plots and the different weed species identified and counted. This was carried out three times per plot to give weed numbers per square metre. Dates of assessments are below.

Peas

Evaluation date	Evaluation Timing (DA)*	Crop Growth Stage (BBCH)	Evaluation type (efficacy, phytotox)	Assessment
31/05/19	17	80% emergence (GS BBCH 10)	Efficacy/ phytotoxicity	Weed number and species present. Phytotoxicity if present.
05/06/19	T1 + 22 T2 + 5	100% emergence (GS BBCH 13)	Efficacy/ phytotoxicity	Weed number and species present. Phytotoxicity if present.
17/06/19	T1 + 34 T2 + 17	BBCH 14- 15	Efficacy/ phytotoxicity	Weed number and species present. Phytotoxicity if present.
25/07/19	T1 + 72 T2 + 55	Crop mature	Efficacy/ phytotoxicity	Weed number and species present. Phytotoxicity if present.

* DA – days after application

Green beans

Evaluation date	Evaluation Timing (DA)*	Crop Growth Stage (BBCH)	Evaluation type (efficacy, phytotox)	Assessment
20/06/2019	T1 + 29	100% emergence (GS cots/1 st tri- foliates)	Efficacy/ phytotoxicity	Weed number and species present. Phytotoxicity if present.
03/07/19	T1 + 42 T2 + 13	Excessive pest damage GS difficult to determine	Efficacy	Weed number and species present.
17/07/19	T1 + 56 T2 + 27	Little crop remaining because of pest damage.	Efficacy	Weed number and species present.

Statistical analysis

Data were analysed using ANOVA in STAR using an alpha level of 0.05.

Results

<u>Peas</u>

Only pre and early post emergence (BBCH 11 -12) applications were made.

Phytotoxicity

No phytotoxic effects were observed on the peas on any of the assessment dates.

Efficacy

Peas were drilled on 14th May which is toward the back end of a vining pea program into good soil conditions. Generally dry weather followed, and a very limited weed spectrum emerged in low numbers. It is not unusual for these later sown crops to receive no pre-emergence herbicide because weed pressure does not warrant it. Post-em sprays alone are used for weed control and rapidly growing crops smother later germinating weeds.

There was no statistically significant control from any of the treatments of the BRSNN or SINAR present. By the time of the final assessment, 25th July just prior to commercial harvest the crop was thick and any weed there was, was minimal and not going to hinder harvest.

PEAS			31-05- 2019	05-06- 2019		17-06- 2019	
			BBCH	BBCH		BBCH	
			11-12	13		14-15	
Treatment	Rate	Timing	SINAR	BRSNN	SINAR	SINAR	BRSNN
1. Untreated			2.25	2.75	4.75	0.25	5
2. AHDB9917	0.7 l/ha	А	2.5	3.5	2.25	0	4.75
3. AHDB9917	0.7 l/ha	В	3.75	2	3.5	0.5	6.25
4. AHDB9917	0.35 l/ha	А	2.75	3	0.75	0	9
5. AHDB9917	0.35 l/ha	В	3.25	2.5	3.5	0	7
6. AHDB9898	1.0 l/ha	А	5.5	2.25	3.5	0.25	8.5
7. AHDB9898	1.0 l/ha	В	2	1.75	2.25	0	5.75
8. Aclonifen	2.0 l/ha	А	1.75	3.75	0.5	0.75	4
9. AHDB9987	2.0 l/ha	А	1.5	1.25	2	0	3.75
10. AHDB9987	2.0 l/ha	В	2	2.25	2	1	7
NS – not			NS	NS	NS	NS	NS
significant							

Green beans

Phytotoxicity

There was high pest pressure at the site. Emergence was uneven and then beans were not protected adequately. Birds and hares fed on any foliage which meant there was no meaningful plant parts to continue with phytotoxicity assessments following the 20th June.

Figure 1: uneven emergence

Figure 2: Typical discoloration – 20th June.

Figure 2 shows a typical discoloration that was being seen on some of the plots which was assessed as phytotoxicity. The blind assessment showed that these symptoms were also seen on the untreated plots so may not have been a crop effect caused by treatment. The uneven emergence may have masked some treatment effects as past PGRO work has identified aclonifen as a material that can significantly affect emergence. This was not picked up in this work but has in the past been noted as an effect that appears to be more severe on sandier soils.

			20.6.19		3.7.19			17.7.19		
			1st trifoli	ate	Badly gra	zed		Few beans		
Treatment	Rate	Timing	GERDI	Phyto	GERDI	SONAS	VERPE	GERDI	SONAS	VERPE
1. Untreated			0.0	2.5	0.0	7.0 a	25.3 a	0.5	12.5	45.3 a
2. AHDB9917	0.7l/ha	A	0.0	2.5	0.0	1.8 b	4.8 bc	0.0	5.8	16.0 bcd
3. AHDB9917	0.7l/ha	С	0.0	2.0	0.0	5.5 ab	24.8 a	0.3	8.8	44.5 ab
4. AHDB9917	0.35l/ha	А	1.3	2.3	2.0	4.3 ab	20.3 ab	4.3	10.0	38.8 abc
5. AHDB9917	0.35l/ha	С	0.0	2.0	0.3	5.0 ab	29.3 a	0.2	9.5	44.8 a
6. AHDB9898	1.0 l/ha	A	6.0	2.5	3.5	2.0 ab	0.5 bc	7.0	8.8	0.5 d
7. AHDB9898	1.0l/ha	В	1.8	2.0	0.5	1.5 b	0.5 bc	0.0	10.8	3.8 d
8. Aclonifen	2.0I/ha	Α	25.3	1.5	25.0	2.3 ab	11.5 abc	19.5	8.8	27.8 abcd
9. AHDB9987	2.0I/ha	Α	27.8	0.8	24.3	0.8 b	0.0 c	23.8	3.8	0.5 d
10. AHDB9987	2.0I/ha	В	16.0	2.0	9.0	4.8 ab	4.5 bc	13.8	13.8	11.0 cd
	CV&		NS	NS	NS	62.04	67.8			50.39
	F _{9,39}					3.74	8.03			10.59
	Р					0.0037	< 0.001			< 0.001

Efficacy

Means with same letter are not significantly different (using Tukey's HSD test).

Weed took some time to emerge. There was a plot wide strip of through the trial which had very high numbers of cranesbill (GERDI). Counts for treatments 6,8,9 and 10 were affected and illustrate that there appeared to be little control of GERDI from AHDB9987 or aclonifen.

By the 3rd July more species were emerging but there were only three present in reasonable numbers; cranesbill, prickly sow thistle and field speedwell. There was little evidence of cranes bill control at this point. However, prickly sow thistle (SONAS) numbers were reduced significantly by pre-emergence sprays of AHDB9917, an early 1.0 l/ha post-emergence application of AHDB9898 and label rate AHDB9987 applied pre-emergence.

A pre-emergence spray of AHDB9917 at label rate significantly reduced field speedwell numbers (VERPE). Post-emergence and lower rate applications did not. Pre and early post emergence sprays of AHDB9898 were effective as were applications of AHDB9987. Other species present in low numbers were groundsel, fat hen, black nightshade, charlock, pansy, creeping thistle and pale persicaria.

By 17th July weeds were present and the same three remained predominant. There was no perceived control of cranesbill but the highlighted distribution heavily affected any meaningful results. There was no longer any significant control of SONAS from any treatment. However, pre-emergence sprays of label rate AHDB9987 gave the greatest reduction in numbers, compared to the untreated.

Field speedwell numbers continued to be reduced significantly by AHDB9898 at label rate when applied pre-emergence. Pre and early post emergence sprays of AHDB9898 continued to be effective as was AHDB9987 applied at pre and early post-emergence timings.

A similar spectrum of weed to that seen at the time of the last assessment was present but numbers were low.

Discussion

The vining pea trial in Yorkshire was drilled under good soil and weather conditions on 14 May 2019. It was however towards the latter stages of the groups drilling program and drier conditions can be expected at this time of the season. This can hamper weed emergence if seed is present in the drier upper layers. The peas on the other hand can be drilled to an appropriate depth into moisture and they emerge and develop quickly with the rising temperatures. Weeds can be out competed and require minimal control. Possibly for partly this reason the pea work revealed little.

Green beans emerged unevenly, and the measures employed to protect them from hare and bird attack were inadequate. This meant that after an initial weed and phytotoxicity assessment there were few entire plants remaining on plots for further assessment.

It has been agreed between AHDB and PGRO that the work will be repeated in 2020 and that product will be made available earlier in the season.

Conclusions

All treatments appeared to be crop safe in both pea and green bean trials, but nothing of statistical significance can be drawn from the pea work regarding weed control due to low levels of weeds. The uneven emergence may have masked some treatment effects as past PGRO work has identified aclonifen as a material that can significantly affect emergence.

Where significant control of weeds was seen in the green bean work pre-emergence AHDB9917 at label rate, pre and early post emergence sprays of AHDB9898 at label rateand applications of AHDB9987 looked the most promising and worthy of further investigation.

Past work at PGRO with AHDB9898 has indicated that commercially it would be used with a mix partner or co-formulated to broaden the spectrum of weeds controlled. Similarly work with AHDB9987 at pre and early post timings have illustrated its crop safety but pre-emergence it 'needs' a helping hand from a partner product to offer broad spectrum weed control.

Acknowledgements

Thank you to AHDB for funding and supporting this project and for the financial and in-kind contributions from the crop protection manufactures and distributors involved with the SCEPTREplus programme as listed below:

Agrii, Alpha Biocontrol Ltd, Andermatt, Arysta Lifescience, BASF, Bayer, Belchim, Bionema Limited, Certis Europe, Dow, DuPont, Eden Research, Fargro Limited, FMC, Gowan, Interfarm, Lallemand Plant Care, Novozymes, Oro Agri, Russell IPM, Sumitomo Chemicals, Syngenta, UPL.

Thank you to Swaythorpe Growers Ltd. for providing the site, and general crop maintenance for the duration of the vining pea trial.

Appendix

Climatological data during study											
Name: Sou	thburn	, Driff	ield								
Temperatu	re (°C)										
Rain (mm)											
Wind spee	d (mph)									
	Mean						Avg wind				
Date	temp	High	Time	Low	Time	Rain	speed	High	Time	Dom Dir	
01-May-19	11.1	18.4	13.30	3.4	5.15	0.0	2.0	11.0	12.30	ESE	
02-May-19	10.3	15.4	12.45	7.1	3.45	4.2	4.4	15.0	10.30	NE	
03-May-19	6.9	9.9	12.45	3.2	00.00	0.6	3.2	16.0	19.00	NNE	
04-May-19	6.2	10.3	14.45	1.7	3.45	1.4	7.8	31.0	10.45	N	
05-May-19	7.4	10.9	14.30	2.9	00.00	0.0	3.3	16.0	10.45	NW	
06-May-19	5.9	10.0	14.45	0.8	1.45	0.2	3.0	13.0	11.45	NE	
07-May-19	7.6	10.5	16.00	4.3	3.45	1.0	3.4	14.0	16.45	E	
08-May-19	8.6	9.6	10.30	7.6	0.15	13.8	9.5	27.0	12.15	E	
09-May-19	7.8	9.1	10.45	4.3	23.00	0.4	7.4	21.0	13.30	NNE	
10-May-19	7.1	11.3	14.45	0.4	5.30	0.2	2.6	12.0	18.45	ESE	
11-May-19	8.6	13.6	14.15	4.2	6.15	0.8	1.8	11.0	14.30	ENE	
12-May-19	8.9	15.1	13.30	0.1	5.45	0.0	3.2	18.0	17.00	SE	
13-May-19	11.1	19.7	16.45	0.4	4.30	0.0	2.9	13.0	12.45	SW	
14-May-19	12.9	20.9	15.45	3.4	5.30	0.0	2.2	10.0	10.00	SSW	
15-May-19	10.8	18.1	15.15	2.7	5.30	0.0	3.0	14.0	14.00	ESE	
16-May-19	10.8	15.4	14.30	2.9	1.45	0.0	5.3	20.0	14.45	E	
17-May-19	12.1	16.9	14.30	9.3	4.00	0.2	6.6	15.0	8.00	NE	
18-May-19	11.9	15.9	12.15	9.1	23.30	2.2	2.4	10.0	7.45	NE	
19-May-19	12.2	17.8	10.45	8.9	00.00	0.0	2.3	11.0	12.30	E	
20-May-19	12.5	18.4	12.45	7.8	23.15	0.0	1.8	12.0	13.30	E	
21-May-19	11.6	19.6	14.45	3.4	4.30	0.2	3.0	13.0	10.30	WNW	
22-May-19	13	19.7	16.30	3.9	5.00	0.0	5.1	20.0	17.45	W	
23-May-19	12.8	19.2	16.00	4.8	4.45	0.0	4.8	19.0	16.15	W	
24-May-19	12.7	19.4	13.00	6.5	5.00	0.0	3.5	13.0	13.45	W	
25-May-19	13.6	19.5	13.00	6.2	2.30	0.0	3.8	16.0	17.45	W	
26-May-19	15.8	19.8	14.30	11.2	22.30	0.4	9.7	28.0	15.45	W	
27-May-19	11.8	16.3	11.00	8.3	23.45	10.2	5.8	25.0	10.15	W	
28-May-19	10.1	14.1	16.00	8.1	00.00	5.4	2.1	15.0	17.00	ENE	
29-May-19	11.5	16.6	14.00	3.8	4.30	0.8	4.4	19.0	16.45	SW	
30-May-19	17.6	21.4	13.45	13.8	0.30	0.0	8.5	22.0	11.15	W	
31-May-19	17.4	20.7	13.00	14.2	5.15	0.0	6.2	18.0	10.15	WSW	
01-Jun-19	15.2	18.7	14.30	11.0	4.45	0.2	5.1	21.0	1.30	WSW	
02-Jun-19	16.7	21.9	11.45	11.2	00.00	0.2	9.0	30.0	14.45	SSW	
03-Jun-19	13.9	18.8	16.30	9.3	2.45	0.0	8.8	25.0	10.15	SW	
04-Jun-19	12.1	16.0	12.00	9.6	5.15	6.6	5.0	19.0	19.00	SE	
05-Jun-19	12.8	15.9	17.15	9.3	5.00	0.2	6.9	23.0	12.15	SSW	
06-Jun-19	14.2	18.7	16.30	10.4	5.30	0.0	4.8	21.0	14.15	WNW	
07-Jun-19	12.9	16.6	12.45	10.8	1.30	7.6	6.5	23.0	15.00	E	
08-Jun-19	12.2	15.8	11.45	10.6	23.15	0.8	4.8	21.0	13.15	WSW	
09-Jun-19	13.0	17.8	15.00	8.6	4.15	0.2	5.7	19.0	9.45	SW	
10-Jun-19	11.8	13.3	12.00	9.1	4.00	0.6	4.2	17.0	22.15	NNE	

Source: Swaythorpe Growers Ltd.

Climatological data during study Stubton site:

May 1, 2019 - May 31, 2019 Weather station ICLAYPOL2 - Claypole 2 miles from Stubton

	Т	emperature			Humidity		Precip. Accum.
Date	High	Avg	Low	High	Avg	Low	Sum
05-01-19	20.0 C	13.3 C	7.2 C	99 %	55 %	1 %	0.00 mm
05-02-19	15.5 C	11.9 C	9.4 C	53 %	53 %	53 %	8.13 mm
05-03-19	9.6 C	8.1 C	6.2 C	53 %	53 %	52 %	1.52 mm
05-04-19	11.3 C	6.7 C	2.9 C	53 %	51 %	1 %	0.51 mm
05-05-19	13.0 C	8.4 C	3.7 C	99 %	65 %	1 %	0.00 mm
05-06-19	13.4 C	8.9 C	5.0 C	99 %	63 %	1 %	0.00 mm
05-07-19	16.1 C	9.8 C	5.6 C	99 %	54 %	1 %	0.00 mm
05-08-19	11.4 C	9.6 C	8.4 C	53 %	53 %	53 %	10.16 mm
05-09-19	10.1 C	8.5 C	7.3 C	53 %	53 %	52 %	2.03 mm
05-10-19	13.5 C	8.6 C	6.2 C	53 %	53 %	52 %	6.35 mm
05-11-19	15.0 C	10.1 C	6.2 C	53 %	52 %	8 %	0.00 mm
05-12-19	18.7 C	11.0 C	3.3 C	99 %	57 %	1 %	0.00 mm
5/13/2019	20.4 C	13.3 C	5.5 C	99 %	56 %	1 %	0.00 mm
5/14/2019	20.2 C	14.3 C	5.9 C	99 %	65 %	1 %	0.00 mm
5/15/2019	19.5 C	13.0 C	5.9 C	99 %	51 %	1 %	0.00 mm
5/16/2019	17.6 C	11.5 C	4.2 C	99 %	55 %	1 %	0.00 mm
5/17/2019	17.5 C	12.4 C	8.2 C	54 %	53 %	53 %	0.51 mm
5/18/2019	16.1 C	12.9 C	10.2 C	54 %	53 %	53 %	0.25 mm
5/19/2019	19.8 C	13.9 C	5.9 C	54 %	53 %	52 %	0.00 mm
5/20/2019	20.7 C	15.1 C	9.3 C	99 %	50 %	1 %	0.00 mm
5/21/2019	21.2 C	14.2 C	5.5 C	99 %	58 %	1 %	0.00 mm
5/22/2019	20.8 C	13.5 C	6.5 C	99 %	54 %	1 %	0.00 mm
5/23/2019	22.9 C	16.1 C	8.8 C	99 %	62 %	1 %	0.00 mm
5/24/2019	22.2 C	15.9 C	8.5 C	99 %	65 %	1 %	0.00 mm
5/25/2019	22.4 C	16.5 C	10.3 C	99 %	57 %	1 %	0.00 mm
5/26/2019	19.8 C	16.4 C	11.5 C	54 %	51 %	20 %	1.27 mm
5/27/2019	17.7 C	13.0 C	9.6 C	54 %	53 %	25 %	0.25 mm
5/28/2019	18.5 C	11.9 C	8.9 C	54 %	53 %	22 %	3.56 mm
5/29/2019	16.1 C	12.1 C	4.9 C	53 %	52 %	24 %	1.02 mm
5/30/2019	23.7 C	18.6 C	14.3 C	54 %	54 %	53 %	0.00 mm
5/31/2019	21.4 C	17.2 C	12.2 C	54 %	54 %	53 %	0.00 mm

June 1, 2019 - June 30, 2019 Weather station ICLAYPOL2 - Claypole 2 miles from Stubton

	Т	emperature			Humidity		Precip. Accum.
Date	High	Avg	Low	High	Avg	Low	Sum
06-01-19	26.2 C	19.4 C	12.2 C	99 %	48 %	1 %	0.00 mm
06-02-19	23.3 C	18.8 C	12.3 C	54 %	54 %	53 %	3.56 mm
06-03-19	19.7 C	15.2 C	11.1 C	99 %	58 %	1 %	0.00 mm
06-04-19	19.1 C	14.0 C	9.4 C	54 %	52 %	1 %	1.52 mm
06-05-19	18.3 C	14.6 C	10.6 C	54 %	53 %	43 %	0.00 mm
06-06-19	20.1 C	15.2 C	9.9 C	99 %	61 %	1 %	0.00 mm
06-07-19	18.4 C	13.2 C	8.1 C	54 %	53 %	53 %	2.03 mm
06-08-19	14.1 C	12.1 C	9.6 C	53 %	53 %	53 %	3.56 mm
06-09-19	20.2 C	14.0 C	8.4 C	99 %	58 %	1 %	0.25 mm
06-10-19	13.5 C	11.6 C	10.1 C	53 %	53 %	53 %	17.78 mm
06-11-19	10.8 C	10.0 C	9.0 C	53 %	53 %	53 %	74.17 mm
06-12-19	15.9 C	12.7 C	9.7 C	53 %	53 %	53 %	23.11 mm
6/13/2019	15.4 C	12.3 C	10.7 C	53 %	53 %	53 %	8.13 mm
6/14/2019	18.8 C	14.2 C	10.2 C	54 %	53 %	53 %	5.59 mm
6/15/2019	19.1 C	14.5 C	9.9 C	54 %	53 %	53 %	4.57 mm
6/16/2019	20.6 C	15.3 C	9.6 C	54 %	53 %	53 %	0.51 mm
6/17/2019	22.1 C	17.7 C	14.1 C	54 %	54 %	53 %	0.00 mm
6/18/2019	21.2 C	16.8 C	12.6 C	54 %	54 %	53 %	2.03 mm
6/19/2019	20.4 C	17.1 C	14.8 C	54 %	54 %	53 %	0.25 mm
6/20/2019	19.4 C	15.4 C	11.3 C	54 %	53 %	53 %	0.25 mm
6/21/2019	20.3 C	15.0 C	7.6 C	54 %	51 %	14 %	0.00 mm
6/22/2019	24.5 C	17.6 C	9.5 C	99 %	65 %	1 %	0.00 mm
6/23/2019	22.5 C	16.4 C	10.5 C	54 %	53 %	53 %	0.51 mm
6/24/2019	22.3 C	18.1 C	14.7 C	54 %	54 %	53 %	1.78 mm
6/25/2019	18.9 C	15.9 C	14.3 C	54 %	53 %	53 %	13.72 mm
6/26/2019	15.8 C	14.1 C	12.2 C	53 %	53 %	53 %	0.00 mm
6/27/2019	20.7 C	15.1 C	10.9 C	54 %	53 %	53 %	0.00 mm
6/28/2019	21.7 C	16.4 C	12.6 C	54 %	53 %	53 %	0.00 mm
6/29/2019	33.1 C	22.4 C	11.1 C	55 %	54 %	53 %	0.00 mm
6/30/2019	23.7 C	19.5 C	14.3 C	54 %	54 %	53 %	0.00 mm

July 1, 2019 - July 31, 2019 Weather station ICLAYPOL2 - Claypole 2 miles from Stubton

	т	emperature			Humidity		Precip. Accum.
Date	High	Avg	Low	High	Avg	Low	Sum
07-02-19	21.7 C	16.1 C	9.7 C	99 %	48 %	1 %	0.00 mm
07-03-19	21.5 C	16.4 C	10.4 C	54 %	54 %	53 %	0.00 mm
07-05-19	25.8 C	19.8 C	14.3 C	55 %	54 %	43 %	0.00 mm
07-06-19	21.6 C	16.6 C	13.9 C	54 %	54 %	53 %	3.56 mm
07-08-19	19.6 C	14.4 C	11.3 C	54 %	53 %	53 %	0.00 mm
07-12-19	23.6 C	18.9 C	14.6 C	54 %	54 %	53 %	4.57 mm
7/13/2019	23.0 C	17.9 C	14.6 C	54 %	54 %	53 %	21.34 mm
7/14/2019	20.3 C	16.5 C	12.4 C	54 %	54 %	53 %	3.56 mm
7/15/2019	25.1 C	17.7 C	10.5 C	54 %	54 %	53 %	0.00 mm
7/16/2019	26.5 C	20.0 C	12.6 C	55 %	54 %	53 %	0.00 mm
7/17/2019	24.3 C	20.2 C	14.7 C	54 %	54 %	53 %	1.27 mm
7/18/2019	22.1 C	18.5 C	14.7 C	54 %	54 %	53 %	0.00 mm
7/19/2019	19.6 C	16.4 C	12.1 C	54 %	54 %	53 %	5.33 mm
7/20/2019	22.2 C	18.7 C	14.1 C	54 %	54 %	53 %	6.35 mm
7/21/2019	22.8 C	18.2 C	12.0 C	54 %	54 %	53 %	0.00 mm
7/22/2019	28.4 C	22.8 C	18.1 C	55 %	54 %	54 %	0.00 mm
7/23/2019	32.6 C	22.5 C	15.0 C	55 %	54 %	53 %	0.00 mm
7/24/2019	29.6 C	26.3 C	21.4 C	55 %	55 %	54 %	5.33 mm
7/25/2019	38.1 C	28.2 C	17.7 C	99 %	59 %	1 %	0.00 mm
7/26/2019	26.0 C	22.8 C	19.7 C	55 %	54 %	54 %	3.30 mm
7/27/2019	19.7 C	17.8 C	15.9 C	54 %	54 %	53 %	15.24 mm
7/28/2019	18.6 C	16.4 C	14.8 C	54 %	53 %	53 %	17.02 mm
7/29/2019	26.7 C	19.6 C	14.5 C	55 %	49 %	1 %	1.02 mm
7/30/2019	23.9 C	19.7 C	17.1 C	54 %	54 %	54 %	6.10 mm
7/31/2019	19.1 C	17.2 C	15.8 C	54 %	54 %	53 %	3.30 mm

- d. Raw data from assessments
- e. Soil analysis: Middleton-on-the-Wolds.

Contact : PGRO GREAT NORTH ROAD THORNHAUGH PETERBOROUGH PE8 6HJ Tel. : 01780 782585	Client :	SCEPTRE AND BSF	
Please quote the above code for all enquiries		I shorston, Deferme	
Sample Matrix · Agricultural Soil		Laboratory Reference	e
Campio Indiana - Agricana a Con	Card	Number 13	110/19
		Data Received	00 Jul 10
		Date Received	09-JUI-19
		Date Reported	15-Jul-19

SOIL ANALYSIS REPORT

Laboratory		Field Details	Index				mg/l (Available)		
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Ρ	к	Mg	Р	к	Mg
56147/19	1	SCEPTRE + BSF No cropping details given	8.0	2	1	1	24.2	104	47

If general fertiliser and lime recommendations have been requested, these are given on the following sheets. The analytical methods used are as described in DEFRA Reference Book 427 The index values are determined from the DEFRA Fertiliser Recommendations RB209 9th Edition.

	Released by	Gina Graham	On behalf of NRM Ltd	Date	15/07/19
	N Tel: +44 (0) 1344 88	RM Coopers Bridge, Braziers I. 6338 Fax: +44 (0) 1344 89	ane, Bracknell, Berkshire RG42 (0972 Email: enquiries@nrm.uk	SNS Loom www.nm	n.uk.com
NRM Laboratories & Registered Number	s a division of Cawood Scientific Ltd, (: 05655711	loopers Bridge, Bezders Lane, Brecknell, Berled	nite RG42 GNS	PAAG	d Agricultural Analysis Group

Soil analysis Stubton.

Contact : PGRO GREAT NORTH ROAD THORNHAUGH PETERBOROUGH PE8 6HJ Tel. : 01780 782585	Client :	STUBTON 2019	
X494			
Please quote the above code for all enquiries		Laboratory Reference	
Sample Matrix : Agricultural Soil	Card	Number 702	68/19
		Date Received Date Reported	10-Jan-19 17-Jan-19

SOIL ANALYSIS REPORT

Laboratory		Field Details			Index		mg/l (Available)		
Sample Reference	No.	Name or O.S. Reference with Cropping Details	Soil pH	Р	к	Mg	P	к	Mg
501307/19	1	STUBTON 2019 No cropping details given	7.6	2	2-	2	15.6	174	81

If general fertiliser and lime recommendations have been requested, these are given on the following sheets. The analytical methods used are as described in DEFRA Reference Book 427 The index values are determined from the DEFRA Fertiliser Recommendations RB209 9th Edition.

	Released by <u>Katle Dunn</u>	On behalf of NRM Ltd	Date <u>17/01/19</u>	
	NRM Coopers Bridge, Braziers Lane, Tel: +44 (0) 1344 886338 Fax: +44 (0) 1344 890972	Bracknell, Berkshire RG42 6 Email: enquiries@nrm.uk/	NS com www.nrm.uk.com	
NRM Regist	laboratories is a division of Cawood Scientific Ltd, Coopers Bridge, Bradess Lane, Backmell, Berlehite RG- and Number: 05655711	42 646	PAAG • Profesional Agricultural Analysis Group	

f. Trial design

G Rep 4	6	1	2	10	4	8	3	9	5	7	G Rep 4
G Rep 3	10	4	9	7	2	5	8	6	3	1	G Rep 3
G Rep 2	8	6	5	2	1	9	3	7	10	4	G Rep 2
G Rep 1	9	4	7	3	6	5	10	1	8	2	G Rep 1

g. ORETO certificate.

Certificate of

Official Recognition of Efficacy Testing Facilities or Organisations in the United Kingdom

This certifies that

PGRO Research Ltd

complies with the minimum standards laid down in Regulation (EC) 1107/2009 for efficacy testing.

The above Facility/Organisation has been officially recognised as being competent to carry out efficacy trials/tests in the United Kingdom in the following categories:

Agriculture/Horticulture Biologicals and Semiochemicals

Date of issue: Effective date: Expiry date:

9 January 2018 1 January 2018 31 December 2022

Signature 🕗 Lisen Nenaval Authorised signatory

HSE Chemicals Regulation Division

Agriculture and Rural Development