# SCEPTREPLUS

# **Final Trial Report**

| Trial code:                                          | SP43                                                    |
|------------------------------------------------------|---------------------------------------------------------|
| Title:                                               | Evaluation of new products for control of rust in leeks |
| Сгор                                                 | Group: Field vegetables - alliums (leeks)               |
| Target                                               | Rust ( <i>Puccinia allii</i> ), PUCCAL                  |
| Lead researcher:                                     | Dr Aoife O' Driscoll                                    |
| Organisation:                                        | RSK ADAS Ltd.                                           |
| Period:                                              | May 2019 to October 2019                                |
| Report date:                                         | 18 <sup>th</sup> December 2019                          |
| Report author:                                       | Dr Aoife O' Driscoll                                    |
| ORETO Number:<br>(certificate should<br>be attached) | 409                                                     |

I the undersigned, hereby declare that the work was performed according to the procedures herein described and that this report is an accurate and faithful record of the results obtained

Dascel

.....

......18/12/19.....

... Date

Authors signature

# **Trial Summary**

#### Introduction

Leek rust caused by the fungus *Puccinia allii* is the most important foliar disease of leeks in the UK. While severe attacks can reduce yield directly, the main economic impact is from its importance as a leaf blemish that downgrades crop quality. Leek rust is active for most of the year and remains a challenge for control as numerous fungicide treatments may be required on overwintered crops. Current control relies on a limited number of active substances from the azole and strobilurin fungicide families and with the common approach of fortnightly applications of alternating fungicides to prevent rust development, resistance could become a real problem. This provides the impetus to identify new active substances which could contribute to both disease control and resistance management strategies against rust in leeks. An inoculated pot trial carried out at ADAS Boxworth identified potential new products to effectively manage leek rust.

#### **Methods**

The trial was laid out as a randomised complete block design with four replicates of nine treatments and eight replicates of the untreated control. Each plot comprised ten plants. Plant protection products comprising six conventional chemical fungicides and one biopesticide were tested alongside an untreated control and an industry 'standard' which was a programme of Amistar Top, Rudis, Nativo and Rudis, in an inoculated pot trial using the open pollinated variety Jolant. The trial was inoculated using a spreader plant method; plants were potted into 5L pots containing John Innes No 3 compost, then placed amongst a set of diseased leek plants to encourage infection. The first treatments were applied on to plants which had approximately five true leaves on 1st August 2019, three days after planting. This was just as the crop was being exposed to infection by P. allii from diseased spreader plants (i.e. products were applied as protectant treatments). All tested products were applied every two to three weeks with a total of four applications of each product made. Products were applied using an Oxford Precision Sprayer at a water volume of 300 L/ha. Rust was first seen in the untreated plots 17 days after spreader plants were placed within the trial and two weeks after the first application of treatment. Infection was then assessed fortnightly until twelve weeks after planting, with five full assessments in total. Disease assessments were performed by visual estimation of the presence of leek rust pustules on the adaxial side of the leaf surface, using a scale in increments of 5% to record the % disease on each plant.

#### Results

Rust incidence and severity was assessed on a % scale where incidence was measured as the proportion of plants affected and severity was measured as the total % leaf area of each plant affected. Mean values and results of analyses at the five assessment timings are presented in Tables 1 and 2. The efficacy of each tested product against rust (presented as the percentage reduction in rust levels compared to the untreated control) at the final assessment date, is presented in Figure 1.

Table 1: Effect of plant protection products on mean % leek rust incidence at five assessment dates.

|           | Mean % disease incidence |          |          |         |          |
|-----------|--------------------------|----------|----------|---------|----------|
| Date      | 25/08/19                 | 03/09/19 | 24/09/19 | 9/10/19 | 23/10/19 |
| Treatment |                          |          |          |         |          |
| Untreated | 52.5                     | 100      | 100      | 100     | 100      |

| Standard | 30                                                          | 50                                                      | 60     | 65     | 62.5   |  |
|----------|-------------------------------------------------------------|---------------------------------------------------------|--------|--------|--------|--|
| AHDB9923 | 30                                                          | 57.5                                                    | 65     | 70     | 70     |  |
| AHDB9914 | 46.67                                                       | 52.5                                                    | 55     | 60     | 62.5   |  |
| AHDB9853 | 47.5                                                        | 52.5                                                    | 57.5   | 62.5   | 62.5   |  |
| AHDB9852 | 46.67                                                       | 50                                                      | 55     | 57.5   | 60     |  |
| AHDB9862 | 47.5                                                        | 52.5                                                    | 55     | 60     | 62.5   |  |
| AHDB9911 | 23.75                                                       | 46.67                                                   | 50     | 56.67  | 56.67  |  |
| AHDB9851 | 23.75                                                       | 47.5                                                    | 66.67  | 66.67  | 70     |  |
| P value  | 0.025                                                       | >0.001                                                  | >0.001 | >0.001 | >0.001 |  |
| d.f.     | 37                                                          | 37                                                      | 37     | 37     | 37     |  |
| l.s.d.   | 18.74                                                       | 17.19                                                   | 16.94  | 16.57  | 16.58  |  |
|          | Not significantly different from untreated control (p>0.05) |                                                         |        |        |        |  |
|          | Sig                                                         | Significantly different from untreated control (p>0.05) |        |        |        |  |

Table 2: Effect of plant protection products on mean % leek rust severity at five assessment dates

|           | Mean % disease severity                                     |                   |                 |                                                         |          |  |  |
|-----------|-------------------------------------------------------------|-------------------|-----------------|---------------------------------------------------------|----------|--|--|
| Date      | 25/08/19                                                    | 03/09/19          | 24/09/19        | 9/10/19                                                 | 23/10/19 |  |  |
| Treatment |                                                             |                   |                 |                                                         |          |  |  |
| Untreated | 2.1                                                         | 14.14             | 24.81           | 35.93                                                   | 52.31    |  |  |
| Standard  | 2.2                                                         | 2.68              | 3.18            | 5.41                                                    | 5.85     |  |  |
| AHDB9923  | 1.75                                                        | 2.33              | 2.83            | 4.83                                                    | 5.25     |  |  |
| AHDB9914  | 1.8                                                         | 2.25              | 3               | 4.5                                                     | 5.43     |  |  |
| AHDB9853  | 1.65                                                        | 2.4               | 2.85            | 4.35                                                    | 5.63     |  |  |
| AHDB9852  | 1.93                                                        | 2.5               | 2.75            | 4.875                                                   | 6.8      |  |  |
| AHDB9862  | 1.5                                                         | 1.88              | 2.38            | 3.925                                                   | 4        |  |  |
| AHDB9911  | 2.33                                                        | 2.23              | 2.98            | 4.475                                                   | 5.825    |  |  |
| AHDB9851  | 1.7                                                         | 2.63              | 2.63            | 4.73                                                    | 4.53     |  |  |
| P value   | 0.014                                                       | >0.001            | >0.001          | >0.001                                                  | >0.001   |  |  |
| d.f.      | 37                                                          | 37                | 37              | 37                                                      | 37       |  |  |
| l.s.d.    | 0.86                                                        | 1.68              | 1.87            | 2.45                                                    | 2.93     |  |  |
|           | Not significantly different from untreated control (p>0.05) |                   |                 |                                                         |          |  |  |
|           | Sign                                                        | ificantly differe | nt from untreat | Significantly different from untreated control (p>0.05) |          |  |  |

Figure 1: Effect of plant protection products, on percentage reduction in leek rust severity at the final assessment date.



#### Conclusions

Moderate to high leek rust levels were observed in untreated plots by the end of the trial. The industry standard programme of sprays performed well, reducing disease by approximately 89% compared with the untreated control; thus the trial had sufficient disease levels for evaluation of products and the standard treatment performed as expected. By the final disease assessment, all of the products tested resulted in over 87% control of leek rust compared to the untreated control, with two products providing greater than 90% control; AHDB9862 and AHDB9851. These products could provide important new control options which, if taken forward for registration, could help with pathogen resistance management strategies in the future. The least best performing product in the trial was AHDB9852, a biopesticide product, which still had good efficacy against rust resulting in 87% control. This product therefore has the potential to provide an additional tool for organic growers who currently operate with limited options in product choice. The effect of all treatments was observed to be maintained for up to four weeks after the final application. This extended protection merits further evaluation to determine if efficacy against leek rust can be maintained with longer intervals in between treatments. This is especially important for a long season, often over wintered crop such as leek where the number of fungicide applications in a season, relative to the length of the crops life cycle, is limited. Phytotoxicity was not observed with any of the treatments and no problems were encountered with the mixing or applying of any of the products.

#### Take home message:

All products tested provided significant levels of leek rust control by the end of the trial. AHDB9862 and AHDB9851 were the two best performing products, providing important new product options which, if taken forward for registration could help with fungicide resistance management strategies in the future. The biopesticide AHDB9852 also performed well and has the potential to provide an additional disease management tool to growers of both conventional and organic leeks.

#### **Objectives**

1. To evaluate the effectiveness of six conventional fungicides and a biopesticide against leek rust (*Puccinia allii*) as measured by disease incidence, severity and % efficacy.

2. To monitor the treated crop for phytotoxicity.

#### **Trial conduct**

UK regulatory guidelines were followed but EPPO guideline took precedence. The following EPPO guidelines were followed:

| Relevant EPPO | Variation from<br>EPPO                                            |      |
|---------------|-------------------------------------------------------------------|------|
| PP 1/152(3)   | Design and analysis of efficacy evaluation trials                 | None |
| PP 1/135(3)   | Phytotoxicity assessment                                          | None |
| PP 1/181(3)   | Conduct and reporting of efficacy evaluation trials including GEP | Yes  |
| PP 1/124 (2)  | Rusts of vegetables                                               | None |

There were two deviations from EPPO guidance. Plot sizes were  $3.13m^2$  rather than  $10m^2$  stipulated in the guidelines. Plants were spaced closer together in a smaller plot area to ensure an even, dense canopy to encourage infection. T3 application took place on the 4<sup>th</sup> October 2019, with the exception of AHDB9911, which was applied late (6<sup>th</sup> October 2019) due to the chemical not being on site.

#### Test site

| Item                  | Details                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|
| Location address      | RSK ADAS Ltd. Boxworth, Cambs CB23 4NN                                                                              |
| Crop                  | Leek                                                                                                                |
| Cultivar              | Jolant                                                                                                              |
| Soil or substrate     | John Innes No 3 compost                                                                                             |
| type                  |                                                                                                                     |
| Agronomic practice    | Calcium nitrate application (74 kg/ha) on 25/9/19. No herbicides were applied as the trial was hand weeded.         |
|                       | Plants were watered by hand twice daily (09:00 and 16:00). On days where rainfall occurred, no watering took place. |
| Prior history of site | N/A                                                                                                                 |

#### Trial design

The trial was laid out as a randomised complete block design with four replicates of nine treatments and eight replicates of the untreated control.

| Item                         | Details                     |
|------------------------------|-----------------------------|
| Trial design:                | Replicated randomised block |
| Number of replicates:        | 4                           |
| Row spacing:                 | 60cm                        |
| Plot size: (w x l)           | 1.56m x 2m                  |
| Plot size: (m <sup>2</sup> ) | 3.13m <sup>2</sup>          |
| Number of plants per         | 10                          |
| plot:                        |                             |
| Leaf Wall Area               | N/A                         |
| calculations                 |                             |

#### Treatment details

| AHDB      | Active substance | Product name or    | Formulation batch | Content of active substance | Formulation       |
|-----------|------------------|--------------------|-------------------|-----------------------------|-------------------|
| Code      |                  | manufacturers code | number            | in product                  | type <sup>1</sup> |
|           |                  |                    |                   |                             |                   |
| Untreated | N/A              | N/A                | N/A               | N/A                         | N/A               |
| N/A       | Azoxystrobin +   | Amistar Top        | GRA7B201E         | 200g/l + 125g/l             |                   |
|           | difenoconazole   |                    |                   |                             |                   |
| N/A       | Tebuconazole +   | Nativo             | EM20010927        | 250 g/kg + 500 g/kg         | WG                |
|           | trifloxystrobin  |                    |                   |                             |                   |
| N/A       | Prothioconazole  | Rudis              | EM4LO24763        | 480 g/l                     | SC                |
| AHDB9923  | N/D              | N/D                | N/D               | N/D                         | N/D               |
| AHDB9914  | N/D              | N/D                | N/D               | N/D                         | N/D               |
| AHDB9853  | N/D              | N/D                | N/D               | N/D                         | N/D               |
| AHDB9852  | N/D              | N/D                | N/D               | N/D                         | N/D               |
| AHDB9862  | N/D              | N/D                | N/D               | N/D                         | N/D               |
| AHDB9911  | N/D              | N/D                | N/D               | N/D                         | N/D               |
| AHDB9851  | N/D              | N/D                | N/D               | N/D                         | N/D               |

<sup>1</sup>SC; Suspension concentrate, EC; Emulsifiable concentrate, WG; Water dispersible granule

## Methods, assessments and records

#### Inoculum production

The trial was artificially inoculated using spreader plants of infected material. Leek seedlings of cv. Pandora were raised in seed modules at Delflands Nurseries, Cambs from March to May 2019 to provide fresh material for inoculation. In tandem with this, diseased leeks were collected from a harvested organic crop in March 2019 at Allpress Farms, Norfolk then potted up at ADAS Boxworth into 5L pots containing John Innes No 3 compost and kept in an enclosed polytunnel until required for inoculation. Once the plants of cv. Pandora had reached three true leaves they were brought back to ADAS, potted up into 5L pots containing John Innes No 3 compost and dispersed in amongst the diseased plants which were collected in March. They were watered twice daily from above to encourage rain splash, with first symptoms observed three weeks after planting. This method ensured that freshly inoculated material with pathogenic spores was used for the trial.

#### Main trial

Leek seed of cv. Jolant; an older open pollinated variety which is rust susceptible was supplied by Elsoms Seeds and raised in seed modules at Delflands Nurseries, Cambs from May-July 2019 to ensure good starting plant material was used for the trial. The plants were brought back to ADAS Boxworth at the five leaf stage and potted into 5L pots containing John Innes compost No 3. On the 30<sup>th</sup> July 2019, ten plants per plot were spread strategically within the plot areas with a minimum of two spreader plants per plot. The trial was watered by hand twice daily to ensure effective spore splash amongst the plants and adequate leaf wetness for spore germination and infection was achieved. First treatments were applied to the trial on the 1<sup>st</sup> August 2019; three days after trial plants were first exposed to rust infection. Subsequent treatment applications took place every 2-3 weeks, taking into account the ca. three week life cycle of rust and prevailing weather patterns which dictated choice of spray dates. A shaded temperature and humidity logger was positioned within the plant canopy when marking out the trial area to record temperature (min and max) and humidity every hour for the duration of the trial. Products were applied using an Oxford Precision Sprayer at a water volume of 300 L/ha.

| Treatment<br>number | Treatment:<br>product name<br>or AHDB code | Rate of active<br>substance<br>(ml or g_a.s./ha) | Rate of product<br>(I or kg/ha) | Application code |
|---------------------|--------------------------------------------|--------------------------------------------------|---------------------------------|------------------|
| 1                   | Untreated                                  | N/A                                              | N/A                             | ABCD             |
| 2                   | Untreated                                  | N/A                                              | N/A                             | ABCD             |
| 3                   | Amistar Top                                | 200 g/ha + 125<br>g/ha                           | 1.0 l/ha                        | A                |
| 3                   | Rudis                                      | 192 ml/ha                                        | 0.4 l/ha                        | B D              |
| 3                   | Nativo                                     | 90g /ha+ 180 g/ha                                | 0.36 kg/ha                      | С                |
| 4                   | AHDB9923                                   | N/D                                              | 1.0 l/ha                        | ABCD             |
| 5                   | AHDB9914                                   | N/D                                              | 0.8 l/ha                        | ABCD             |
| 6                   | AHDB9853                                   | N/D                                              | 0.5 l/ha                        | ABCD             |
| 7                   | AHDB9852                                   | N/D                                              | 3.2 l/ha                        | ABCD             |
| 8                   | AHDB9862                                   | N/D                                              | 1.5 l/ha                        | ABCD             |
| 9                   | AHDB9911                                   | N/D                                              | 1.75 l/ha                       | ABCD             |
| 10                  | AHDB9851                                   | N/D                                              | 0.1 l/ha                        | ABCD             |

#### Application schedule

#### Application details

|                                           | Application<br>A | Application<br>B | Application<br>C | Application<br>D |
|-------------------------------------------|------------------|------------------|------------------|------------------|
| Application date                          | 01/08/2019       | 15/08/2019       | 04/09/2019       | 26/09/2019       |
| Time of day                               | 10:15 – 10:45    | 12:00 - 12:30    | 11:45 – 12:15    | 09:00 - 09:30    |
| Crop growth stage (Max, min average BBCH) | 41               | 43               | 43               | 43               |
| Crop height (cm)                          | 25               | 30               | 30               | 35               |
| Crop coverage (%)                         | 50               | 50               | 70               | 80               |
| Application Method                        | Spray            | Spray            | Spray            | Spray            |
| Application Placement                     | Foliar           | Foliar           | Foliar           | Foliar           |
| Application equipment                     | OPS              | OPS              | OPS              | OPS              |
| Nozzle pressure                           | 2 Bar            | 2 Bar            | 2 Bar            | 2 Bar            |
| Nozzle type                               | Flat fan         | Flat fan         | Flat fan         | Flat fan         |
| Nozzle size                               | F04/110          | F04/110          | F04/110          | F04/110          |
| Application water volume/ha               | 300 l/ha         | 300 l/ha         | 300 l/ha         | 300 l/ha         |
| Temperature of air - shade<br>(°C)        | 22.8             | 20.25            | 22.7             | 20.25            |
| Relative humidity (%)                     | 61.6             | 64.65            | 64.45            | 64.65            |
| Wind speed range (m/s)                    | 1.1 – 1.8        | 7.5 – 6.5        | 4.2 – 4.8        | 7.5 – 6.5        |
| Dew presence (Y/N)                        | Ν                | Ν                | Ν                | Ν                |
| Temperature of soil - 2-5 cm<br>(°C)      | n/a              | n/a              | n/a              | n/a              |
| Wetness of soil - 2-5 cm                  | n/a              | n/a              | n/a              | n/a              |
| Cloud cover (%)                           | 80%              | 80%              | 50%              | 70%              |

# Untreated levels of pests/pathogens at application and through the assessment period

| Common<br>name | Scientific<br>Name | EPPO<br>Code | Infection<br>level<br>pre-<br>application | Infection level at<br>start of assessment<br>period | Infection level at<br>end of assessment<br>period      |
|----------------|--------------------|--------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|
| Leek rust      | Puccinia<br>allii  | PUCCAL       | 0%<br>incidence                           | 0% incidence                                        | 100% incidence in<br>untreated control<br>52% severity |

#### Assessment details

All plants were scored for leek rust symptoms every 2-3 weeks, until twelve weeks after planting, with five full assessments in total. Disease assessments were performed by visual estimation of the presence of leek rust pustules on the adaxial side of the leaf surface, using a scale in increments of 5% to record the % disease within each plot. This score gave incidence and severity of rust within the plot.

| Evaluation date | Evaluation<br>Timing<br>(DA)* | Crop<br>Growth<br>Stage<br>(BBCH) | Evaluation<br>type<br>(efficacy,<br>phytotox) | What was assessed and how (e.g. dead<br>or live pest; disease incidence and<br>severity; yield, marketable quality) |
|-----------------|-------------------------------|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 01/08/2019      | 0                             | 41                                | Baseline                                      | Disease incidence (Rust)                                                                                            |
|                 |                               |                                   | assessment                                    |                                                                                                                     |
| 15/08/2019      | 14                            | 41                                | Phytotoxicity                                 | Phytotoxicity                                                                                                       |
|                 |                               |                                   | and efficacy                                  | Disease incidence and severity (Rust)                                                                               |
| 03/09/2019      | 33                            | 43                                | Phytotoxicity                                 | Phytotoxicity                                                                                                       |
|                 |                               |                                   | and efficacy                                  | Disease incidence and severity (Rust)                                                                               |

| 24/09/2019 | 54 | 43 | Phytotoxicity | Phytotoxicity                         |
|------------|----|----|---------------|---------------------------------------|
|            |    |    | and efficacy  | Disease incidence and severity (Rust) |
| 09/10/2019 | 69 | 43 | Phytotoxicity | Phytotoxicity                         |
|            |    |    | and efficacy  | Disease incidence and severity (Rust) |
| 23/10/2019 | 83 | 45 | Phytotoxicity | Phytotoxicity                         |
|            |    |    | and efficacy  | Disease incidence and severity (Rust) |

\* DA – days after first application

#### **Statistical analysis**

The trial was laid out as a randomised complete block design. Statistical analysis was carried out using a generalised ANOVA and Duncan's Multiple Range test in Genstat 12.2, using disease incidence and severity values as variables. The analysis assessed for differences between treatments compared to the untreated control as well as differences between the replicate blocks in the trial.

Using disease severity data from the final assessment on the 23<sup>rd</sup> October, % efficacy of each product was calculated using the following formula.

Percentage control = 1 - <u>Disease severity of treatment</u> x 100 Disease severity of untreated

#### Results

#### **Phytotoxicity**

There were no phytotoxic symptoms observed with any of the products tested at any of the assessments.

#### Efficacy

The first visible symptoms of leek rust were present in untreated plots seventeen days after inoculation, with 52.5% of untreated plants infected by the first full assessment (25/08/19). As plants grew larger there was continuing disease activity that maintained severity in the untreated controls throughout the trial period. The results for mean % leek rust incidence and severity on five assessment dates are presented in Table 3 and Table 4, respectively. The efficacy of each product when compared to disease severity in the untreated controls at the final assessment is presented in Figure 2. All treatments had a significant (p<0.05) effect both on the incidence and severity of leek rust at the different assessment points. By the final assessment, all of the products tested gave over 87% control of the disease compared to the untreated control, with two products providing greater than 90% control; these were AHDB9862 and AHDB9851. The least best performing product in the trial was AHDB9852, a biopesticide product, which still had good efficacy against rust giving 87% control.

|           |          | Mean               | % disease inc   | cidence          |          |
|-----------|----------|--------------------|-----------------|------------------|----------|
| Date      | 25/08/19 | 03/09/19           | 24/09/19        | 9/10/19          | 23/10/19 |
| Treatment |          |                    |                 |                  |          |
| Untreated | 52.5     | 100                | 100             | 100              | 100      |
| Standard  | 30       | 50                 | 60              | 65               | 62.5     |
| AHDB9923  | 30       | 57.5               | 65              | 70               | 70       |
| AHDB9914  | 46.67    | 52.5               | 55              | 60               | 62.5     |
| AHDB9853  | 47.5     | 52.5               | 57.5            | 62.5             | 62.5     |
| AHDB9852  | 46.67    | 50                 | 55              | 57.5             | 60       |
| AHDB9862  | 47.5     | 52.5               | 55              | 60               | 62.5     |
| AHDB9911  | 23.75    | 46.67              | 50              | 56.67            | 56.67    |
| AHDB9851  | 23.75    | 47.5               | 66.67           | 66.67            | 70       |
| P value   | 0.025    | >0.001             | >0.001          | >0.001           | >0.001   |
| d.f.      | 37       | 37                 | 37              | 37               | 37       |
| l.s.d.    | 18.74    | 17.19              | 16.94           | 16.57            | 16.58    |
|           | Not s    | ignificantly diffe | erent from untr | eated control (p | >0.05)   |
|           | Sig      | nificantly differ  | ent from untrea | ted control (p>  | 0.05)    |

Table 3: Effect of plant protection products on mean % leek rust incidence at five assessment dates.

Table 4: Effect of plant protection products on mean % leek rust severity at five assessment dates.

|           |          | Mean              | % disease se    | verity          |          |
|-----------|----------|-------------------|-----------------|-----------------|----------|
| Date      | 25/08/19 | 03/09/19          | 24/09/19        | 9/10/19         | 23/10/19 |
| Treatment |          |                   |                 |                 |          |
| Untreated | 2.1      | 14.14             | 24.81           | 35.93           | 52.31    |
| Standard  | 2.2      | 2.68              | 3.18            | 5.41            | 5.85     |
| AHDB9923  | 1.75     | 2.33              | 2.83            | 4.83            | 5.25     |
| AHDB9914  | 1.8      | 2.25              | 3               | 4.5             | 5.43     |
| AHDB9853  | 1.65     | 2.4               | 2.85            | 4.35            | 5.63     |
| AHDB9852  | 1.93     | 2.5               | 2.75            | 4.875           | 6.8      |
| AHDB9862  | 1.5      | 1.88              | 2.38            | 3.925           | 4        |
| AHDB9911  | 2.33     | 2.23              | 2.98            | 4.475           | 5.825    |
| AHDB9851  | 1.7      | 2.63              | 2.63            | 4.73            | 4.53     |
| P value   | 0.014    | >0.001            | >0.001          | >0.001          | >0.001   |
| d.f.      | 37       | 37                | 37              | 37              | 37       |
| l.s.d.    | 0.86     | 1.68              | 1.87            | 2.45            | 2.93     |
|           | Not sig  | gnificantly diffe | rent from untre | ated control (p | >0.05)   |
|           | Sign     | ificantly differe | nt from untreat | ed control (p>0 | ).05)    |



Figure 2: Effect of plant protection products, on percentage reduction in leek rust severity at the final assessment date.

## Discussion

High leek rust levels were observed in untreated plots by the end of the trial. The industry standard fungicide programme performed well, reducing disease by approximately 88% compared to the untreated control; thus the trial had sufficient disease levels for evaluation of products and the standard treatment performed as expected.

By the final assessment, all products tested resulted in over 87% control of leek rust compared to the untreated control, with two products providing greater than 90% control; AHDB9862 and AHDB9851. These products could provide important new control options which, if taken forward for registration could help with pathogen resistance management strategies in the future. The least best performing product in the trial was AHDB9852, a biopesticide product, which nevertheless still had good efficacy against rust resulting in 87% control. This product has the potential to provide an additional tool for organic growers who currently operate with limited options in product choice. Phytotoxicity was not observed with any of the treatments and no problems were encountered with the mixing or applying of any of the products. The effect of all treatments was observed to be maintained for up to four weeks after the final application. This extended protection merits further evaluation to determine if efficacy against leek rust can be maintained with longer intervals in between treatments. This is especially important for a long season, often over wintered crop such as leek where the number of fungicide applications in a season, relative to the length of the crops life cycle, is limited.

#### Conclusions

- Leek rust disease levels developed to high levels in untreated plots.
- The industry standard fungicide programme resulted in good control of rust.
- All conventional fungicide treatments provided significant levels of rust control by the end of the trial.
- AHDB9862 and AHDB9851 were the two best performing products in the trial, providing important new product options which, if taken forward for registration could help with resistance management strategies in the future.

- The biopesticide product AHDB9852 performed well in the trial, providing 87% control of rust compared to the untreated control. This has the potential to provide an additional disease management tool to growers of both conventional and organic leeks.
- The effect of all treatments was observed to be maintained for up to four weeks after the final application. This extended protection merits further evaluation to determine if efficacy against leek rust can be maintained with longer intervals in between treatments.
- No product tested proved phytotoxic to the plant.

# Acknowledgements

We would like to thank AHDB and the participating crop protection companies for project funding. David Norman (Fresh Produce Consultancy) for agronomic advice and review of protocols and the final report. Allpress Farms for providing the spreader plants for the trial and Delflands Nurseries for propagation facilities in growing up young leeks.

#### Appendix

a. Crop diary - events related to growing crop

| Crop | Cultivar | Planting date              |
|------|----------|----------------------------|
| Leek | Jolant   | 29 <sup>th</sup> July 2019 |

Fertilisers applied to the trial area

| Date       | Product  | Rate | Unit  |
|------------|----------|------|-------|
| 25/09/2019 | YaraMila | 75   | Kg/ha |

b. \_\_\_\_\_\_ Table showing sequence of events by date - this relates to treatments and assessments.

| Date       | Event                                                                |
|------------|----------------------------------------------------------------------|
| 18/03/2019 | Collection of diseased leeks from an organic crop being harvested at |
|            | Allpress Farms, Cambs. Approx. 120 leeks were potted into John       |
|            | Innes No2 and put in polytunnel 2.                                   |
| 08/04/2019 | Leeks were placed on hard standing and watering by hand 3 time per   |
|            | week from above to encourage further disease spread.                 |
| 16/05/2019 | Sowed 300 seeds of cv. Jolant at Delflands Nurseries                 |
| 07/06/2019 | Pandora leeks (approx. 180 plants) from Delflands potted up 3L pots  |
|            | containing John Innes No2 with 2 plants/pot, and placed around the   |
|            | older leeks for infection - watering by hand 3 time per week from    |
|            | above to encourage further disease spread.                           |
| 19/07/2019 | Collection of leeks cv. Jolant from Delflands.                       |
| 23/07/2019 | Filled new 5L pots with John Innes No2 compost and placed in trial   |
|            | positions on hard standing on bread crates                           |
| 29/07/2019 | Potted cv. Jolant leeks into the pots on hard standing               |
| 30/07/2019 | Baseline assessment of trial                                         |
| 01/08/2019 | T1 application                                                       |
| 15/08/2019 | Assessment 2, little disease present yet                             |
| 15/08/2019 | T2 application                                                       |
| 03/09/2019 | Assessment 3, disease taking off in untreated plots                  |
| 04/09/2019 | T3 application, with the exception of AHDB9911                       |
| 10/09/2019 | Treatment 9 AHDB9911 applied late due to chemical not being on site  |
| 24/09/2019 | Assessment 4, big differences between treated and untreated, little  |
|            | difference between treatments                                        |
| 25/09/2019 | YaraMila complex 75kg/ha = 300g spread over all soil surfaces        |
| 26/09/2019 | T4 application                                                       |
| 02/10/2019 | Leeks weeded, spreader plants removed                                |
| 09/10/2019 | Assessment 5                                                         |
| 23/10/2019 | Assessment 6                                                         |

c. Table showing climatological data during study period – if outdoors then air max, air min and rainfall. If indoors air max and min and RH.

| Date       | Max Temp °C | Min Temp °C | Average RH % |
|------------|-------------|-------------|--------------|
| 30/07/2019 | 14.5        | 29          | 86.02        |
| 31/07/2019 | 14.5        | 24.5        | 87.75        |
| 01/08/2019 | 14          | 34          | 79.81        |
| 02/08/2019 | 12          | 28.5        | 86           |
| 03/08/2019 | 9           | 35          | 89.68        |
| 04/08/2019 | 13          | 30          | 87.12        |
| 05/08/2019 | 14          | 29          | 91.5         |
| 06/08/2019 | 12.5        | 30.5        | 89.48        |
| 07/08/2019 | 13          | 29          | 85.58        |
| 08/08/2019 | 11.5        | 36          | 90.46        |

| 09/08/2019 | 15.5     | 28   | 92.69          |
|------------|----------|------|----------------|
| 10/08/2019 | 14.5     | 25.5 | 89.77          |
| 11/08/2019 | 12.5     | 25   | 88.77          |
| 12/08/2019 | 10.5     | 26   | 94.52          |
| 13/08/2019 | 8.5      | 27   | 89.35          |
| 14/08/2019 | 9        | 21   | 96.94          |
| 15/08/2019 | 11       | 25   | 91.46          |
| 16/08/2019 | 9.5      | 18   | 96.08          |
| 17/08/2019 | 12       | 27.5 | 89.67          |
| 18/08/2019 | 12       | 26   | 86.98          |
| 19/08/2019 | 10.5     | 23.5 | 88.39          |
| 20/08/2019 | 9        | 27.5 | 89.71          |
| 21/08/2019 | 10       | 26   | 90.94          |
| 22/08/2019 | 10       | 28   | 84.5           |
| 23/08/2019 | 13       | 34.5 | 88.88          |
| 24/08/2019 | 8.5      | 37   | 85.63          |
| 25/08/2019 | 10.5     | 39   | 75.83          |
| 26/08/2019 | 12       | 38.5 | 73.27          |
| 27/08/2019 | 13.5     | 37   | 85.44          |
| 28/08/2019 | 16.5     | 33   | 81 27          |
| 29/08/2019 | 10       | 27   | 82.67          |
| 30/08/2019 | 11 5     | 29.5 | 81.38          |
| 31/08/2019 | 10       | 20:0 | 83             |
| 01/00/2019 | 8        | 27.5 | 79.62          |
| 02/09/2019 | 7        | 28.5 | 82.06          |
| 02/09/2019 | 12       | 20.5 | 81.46          |
| 03/03/2019 | 12 12 5  | 23.5 | 83.60          |
| 05/00/2010 | 7        | 24   | 80.75          |
| 06/00/2019 | 85       | 18.5 | 00.75          |
| 07/09/2019 | 0.5      | 18.5 | 92.94          |
| 01/09/2019 | 0        | 21.5 | 87.10          |
| 00/09/2019 | 4        | 21.5 | 07.19          |
| 10/00/2010 | 9.5      | 15   | 94.33          |
| 11/00/2010 | 9        | 20   | 97.43          |
| 12/00/2019 | 12       | 21   | 92.09          |
| 12/09/2019 | 75       | 20.5 | 91.00          |
| 13/09/2019 | 1.5      | 20.5 | 07.40          |
| 14/09/2019 | <u> </u> | 30.5 | 07.42          |
| 15/09/2019 | 9.5      | 30.3 | 90.33          |
| 10/09/2019 | 9.5      | 10.0 | 97.90          |
| 17/09/2019 | <u> </u> | 22   | 92.3           |
| 10/09/2019 | <u> </u> | 24   | 90.73          |
| 19/09/2019 |          | 20.5 | 07.90<br>00.44 |
| 20/09/2019 | 4.5      | 23.5 | <u>80.44</u>   |
| 21/09/2019 | 6        | 20.5 | 88.29          |
| 22/09/2019 | 13       | 25   | 97.5           |
| 23/09/2019 | 11.5     | 23.5 | 97.04          |
| 24/09/2019 | 14       | 22   | 99.19          |
| 25/09/2019 | 13.5     | 22.5 | 99.15          |
| 26/09/2019 | 12       | 25   | 97.39          |
| 21/09/2019 | 10.5     | 22.5 | 97.56          |
| 28/09/2019 | 10       | 21   | 97.44          |
| 29/09/2019 | 10.5     | 21   | 99.31          |
| 30/09/2019 | 8        | 21.5 | 99.041         |
| 01/10/2019 | 10       | 22   | 99.91          |
| 02/10/2019 | 3        | 19   | 98.43          |
| 03/10/2019 | 2.5      | 13   | 98.52          |
| 04/10/2019 | 9        | 17.5 | 99.06          |
| 05/10/2019 | 10       | 18   | 99.74          |

| 06/10/2019 | 9.5  | 16.5 | 100   |
|------------|------|------|-------|
| 07/10/2019 | 7    | 15.5 | 100   |
| 08/10/2019 | 9    | 18   | 99.83 |
| 09/10/2019 | 7.5  | 18   | 99.18 |
| 10/10/2019 | 6.5  | 16   | 98.75 |
| 11/10/2019 | 12.5 | 17.5 | 99.79 |
| 12/10/2019 | 9.5  | 14   | 100   |
| 13/10/2019 | 8.5  | 16   | 100   |
| 14/10/2019 | 8    | 13.5 | 99.97 |
| 15/10/2019 | 8    | 15.5 | 99.85 |
| 16/10/2019 | 5.5  | 17   | 99.85 |
| 17/10/2019 | 4    | 17.5 | 99.79 |
| 18/10/2019 | 8.5  | 15.5 | 99.81 |
| 19/10/2019 | 7    | 15   | 99.43 |
| 20/10/2019 | 4.5  | 12   | 99.97 |
| 21/10/2019 | 8    | 12.5 | 99.97 |
| 22/10/2019 | 5    | 15.5 | 99.31 |
| 23/10/2019 | 2.5  | 14   | 99.85 |
| 24/10/2019 | 8    | 12.5 | 100   |
| 25/10/2019 | 7.5  | 15   | 100   |
| 26/10/2019 | 4    | 15   | 99.83 |

#### d. Raw data from assessments

|         | Assessment Date | 05/09/19      | 05/09/19     | 17/09/19      | 17/09/19     | 30/09/19      | 30/09/19     | 07/10/19      | 07/10/19     | 23/10/19      | 23/10/19     |
|---------|-----------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|
|         | Assessment Type | Incidence (%) | Severity (%) |
|         |                 |               |              |               |              |               |              |               |              |               |              |
| Plot No | Treatment Name  |               |              |               |              |               |              |               |              |               |              |
| 109     | Untreated       | 20            | 2.3          | 100           | 15           | 100           | 26.5         | 100           | 35.5         | 100           | 49           |
| 206     | Untreated       | 20            | 2.6          | 100           | 12.5         | 100           | 21           | 100           | 36           | 100           | 52.5         |
| 310     | Untreated       | 30            | 1.3          | 100           | 17.5         | 100           | 24.5         | 100           | 33.5         | 100           | 54.5         |
| 404     | Untreated       | 30            | 2.6          | 100           | 15.5         | 100           | 25.5         | 100           | 35.5         | 100           | 50.5         |
| 104     | Untreated       | 10            | 1.3          | 100           | 20.5         | 100           | 27.5         | 100           | 33.5         | 100           | 53           |
| 205     | Untreated       | 30            | 2.3          | 100           | 14.5         | 100           | 23.5         | 100           | 36.5         | 100           | 45.5         |
| 307     | Untreated       | 30            | 1.6          | 100           | 14.8         | 100           | 24           | 100           | 35           | 100           | 56.5         |
| 406     | Untreated       | 20            | 2.8          | 100           | 2.8          | 100           | 26           | 100           | 42           | 100           | 57           |
| 106     | Standard        | 50            | 0.9          | 60            | 2.8          | 70            | 3.8          | 80            | 6.8          | 80            | 6.8          |
| 202     | Standard        | 50            | 2.3          | 50            | 2.3          | 60            | 3.3          | 70            | 5.3          | 60            | 5.3          |
| 309     | Standard        | 30            | 3.1          | 40            | 3.1          | 50            | 3.1          | 50            | 6.1          | 50            | 7.8          |
| 401     | Standard        | 50            | 2.5          | 50            | 2.5          | 60            | 2.5          | 60            | 3.5          | 60            | 3.5          |
| 108     | AHDB9923        | 50            | 0.8          | 50            | 2.6          | 60            | 3.6          | 70            | 4.6          | 70            | 4.6          |
| 203     | AHDB9923        | 60            | 2.1          | 70            | 2.1          | 80            | 3.1          | 80            | 5.1          | 80            | 5.1          |
| 304     | AHDB9923        | 50            | 1.5          | 50            | 2            | 50            | 2            | 60            | 5            | 60            | 5            |
| 407     | AHDB9923        | 60            | 2.6          | 60            | 2.6          | 70            | 2.6          | 70            | 4.6          | 70            | 6.3          |
| 102     | AHDB9914        | 40            | 1            | 50            | 1.8          | 50            | 2.8          | 60            | 3.8          | 60            | 3.8          |
| 204     | AHDB9914        | 50            | 2.6          | 50            | 3.1          | 60            | 4.1          | 60            | 6.1          | 70            | 7.8          |
| 308     | AHDB9914        | 40            | 2            | 50            | 2            | 50            | 3            | 50            | 4            | 40            | 4            |
| 402     | AHDB9914        | 60            | 1.6          | 60            | 2.1          | 60            | 2.1          | 70            | 4.1          | 80            | 6.1          |
| 107     | AHDB9853        | 50            | 1.3          | 50            | 2.6          | 60            | 3.6          | 60            | 4.6          | 60            | 6.3          |
| 209     | AHDB9853        | 50            | 1.6          | 60            | 2.1          | 60            | 2.1          | 70            | 3.1          | 70            | 2.8          |
| 303     | AHDB9853        | 60            | 2.6          | 60            | 2.6          | 70            | 3.6          | 70            | 5.6          | 70            | 7.3          |
| 410     | AHDB9853        | 30            | 1.1          | 40            | 2.1          | 40            | 2.1          | 50            | 4.1          | 50            | 6.1          |
| 101     | AHDB9852        | 50            | 0.8          | 50            | 2.3          | 60            | 2.3          | 60            | 2.8          | 70            | 6.8          |
| 210     | AHDB9852        | 60            | 2.8          | 60            | 2.8          | 60            | 2.8          | 60            | 5.8          | 50            | 7.8          |
| 302     | AHDB9852        | 40            | 2.3          | 50            | 2.6          | 50            | 3.6          | 60            | 5.6          | 70            | 7.3          |
| 405     | AHDB9852        | 40            | 1.8          | 40            | 2.3          | 50            | 2.3          | 50            | 5.3          | 50            | 5.3          |
| 201     | AHDB9862        | 70            | 1.3          | 70            | 1.8          | 70            | 2.8          | 80            | 3.8          | 80            | 3.8          |
| 103     | AHDB9862        | 30            | 1.1          | 40            | 2.1          | 50            | 2.1          | 50            | 4.3          | 50            | 4.6          |
| 301     | AHDB9862        | 50            | 2.1          | 50            | 2.1          | 50            | 3.1          | 50            | 4.1          | 50            | 4.1          |

|         | Assessment Date | 05/09/19      | 05/09/19     | 17/09/19      | 17/09/19     | 30/09/19      | 30/09/19     | 07/10/19      | 07/10/19     | 23/10/19      | 23/10/19     |
|---------|-----------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|
|         | Assessment Type | Incidence (%) | Severity (%) |
|         |                 |               |              |               |              |               |              |               |              |               |              |
| Plot No | Treatment Name  |               |              |               |              |               |              |               |              |               |              |
| 403     | AHDB9862        | 40            | 1.5          | 50            | 1.5          | 50            | 1.5          | 60            | 3.5          | 70            | 3.5          |
| 110     | AHDB9911        | 30            | 1.9          | 30            | 1.5          | 30            | 2.5          | 40            | 3.5          | 40            | 4.9          |
| 208     | AHDB9911        | 60            | 2.3          | 60            | 2.3          | 70            | 3.3          | 70            | 5.3          | 70            | 7.3          |
| 305     | AHDB9911        | 40            | 2.1          | 50            | 2.1          | 50            | 3.1          | 60            | 4.1          | 60            | 6.1          |
| 409     | AHDB9911        | 60            | 3            | 60            | 3            | 60            | 3            | 60            | 5            | 50            | 5            |
| 105     | AHDB9851        | 60            | 0.5          | 60            | 2.8          | 60            | 2.8          | 70            | 4.1          | 70            | 3.8          |
| 207     | AHDB9851        | 60            | 1.8          | 70            | 2.3          | 80            | 2.3          | 80            | 5.3          | 70            | 5.3          |
| 306     | AHDB9851        | 60            | 2.8          | 60            | 2.8          | 60            | 2.8          | 70            | 4.8          | 70            | 4.5          |
| 408     | AHDB9851        | 30            | 2.6          | 50            | 3.1          | 60            | 4.1          | 60            | 7.1          | 70            | 6.8          |

e. photographs

Trial layout





Typical rust symptoms in the untreated control plots, at the final assessment date.  $25^{th}$  October 2019.



Typical untreated plot (left) versus a typical treated plot with AHDB9862 (right).



Certificate of

Official Recognition of Efficacy Testing Facilities or Organisations in the United Kingdom

# This certifies that RSK ADAS Ltd

complies with the minimum standards laid down in Regulation (EC) 1107/2009 for efficacy testing.

The above Facility/Organisation has been officially recognised as being competent to carry out efficacy trials/tests in the United Kingdom in the following categories:

#### Agriculture/Horticulture Stored Crops Biologicals and Semiochemicals

Date of issue: 1 June 2018 Effective date: 18 March 2018 Expiry date: 17 March 2023

Signature Alison Richardson

HSE Chemicals Regulation Division Certification Number

Agriculture and Rural Development