SCEPTREPLUS

Final Trial Report

Trial code:	2018. SP02
Title:	AHDB SCEPTREplus transplanted herb herbicide screen
Crop:	Leafy vegetables (herbs)
Target:	General broadleaf weeds and grasses, 3WEEDT EPPO1/89(3) Weeds in leafy and brassica vegetables
Lead researcher:	Angela Huckle
Organisation:	RSK ADAS
Period:	14 th May 2018 – 31 st December 2018
Report date:	10 th May 2019
Report author:	Angela Huckle Emily Lawrence
ORETO Number: (certificate should be attached)	ORETO 409

I the undersigned, hereby	declare that the work was performed according to the
procedures herein describ	ped and that this report is an accurate and faithful record o
the results obtained	la familia de la companya della companya della companya de la companya della comp
11.06.2019	
Date	Authors signature

Trial Summary

Introduction

The wide range of herb species grown presents a challenge for growers to identify herbicides which are crop safe to each particular species; there is often little information from manufacturers as herbs are very minor crops. While the herb sector is small, these crops are highly valuable. Any defects or discolouration can lead to rejection, as many herbs are sold as fresh cut products, so knowledge of the crop safety of potential new herbicides is very important.

Linuron has been a key component of herbicide programs for a number of herb crops along with lenacil (Venzar Flow). These products formed the basis of commercial programs and are used in a tank mix both pre- and post-emergence, to complement the weed control spectrums of other actives. Linuron was withdrawn on 3 June 2018-; this left herb growers with limited options for pre-emergence weed control. Therefore it is a high priority for growers to find potential replacement products and understand their crop safety to a range of herb species.

Also, groundsel, mayweed, annual meadow grass and couch grass were identified as particular problems for outdoor herb growers in the AHDB Horticulture 'Gap Analysis' project CP 132 (2016). Crop selectivity of a range of herbicides, which target the above broad-leaved weeds were screened on six species of herbs grown from transplants. These herbs were selected by the British Herb Trade Association. In addition, a product was also included in the screen for improving grass weed control.

The objective of this trial was to identify potential new crop-safe herbicides which may be used to partly or fully replace the previous use of linuron.

Methods

The trial was sited on an uncovered hard standing at ADAS Boxworth. Treatments were either incorporated into the soil before potting (treatments 2, 3 and 4), applied over soil in pots prior to planting (treatments 5 to 10), or applied over the herbs nine days after planting (treatments 11 to 28). The herbs had approximately five side shoots present at the post-planting application.

Herbs of six species were included in the trial – chamomile (CHA), mint (MINT), oregano (ORE), sage (SAGE), tarragon (TAR), and thyme (THY). Pre-planting treatments (Application were applied on 20th June 2018. Post-plant treatments (Application B) were applied on 29th June 2018. The treatments were applied with a 0.5m lance and an Oxford Precision Sprayer knapsack at 200 L/ha water volume.

A fully randomised block design was used with four replicates of twenty-eight treatments, including an untreated control for comparison. Each 'plot' consisted of 2 x 2L pots, with the whole trial totaling 1344 pots. Crop safety was assessed twice; on 25th July and 13th August vigour scores were recorded, comparing the overall appearance of treated and untreated pots.

Results and discussion

Table 1. Summary of crop vigour at 6 weeks after the post planting application (13th August 2018) (treatment dose rates at half (0.5x), full (1x), or twice (2x) full normal rate). Scored from 0 to 9; 0 = complete crop death, 9 = no quality reduction, <7 commercially unacceptable damage (*highlighted in red*).

Pre-plant 20 th June 2018	Post-planting 29 th June 2018	СНА	MINT	ORE	SAGE	TAR	THY
Untreated	-	9.00	9.00	9.00	9.00	9.00	9.00
Devrinol 450 SC 1.4 L/ha	•	8.75	7.75	7.25	8.25	6.75	9.00

Pre-plant 20 th June 2018	Post-planting 29 th June 2018	СНА	MINT	ORE	SAGE	TAR	THY
Devrinol 450 SC SC 2.8 L/ha	-	7.75	8.75	4.75	7.50	5.75	8.25
Devrinol 450 SC SC 5.6 L/ha	-	6.50	7.00	6.25	6.50	3.50	6.25
AHDB 9918 (0.5x)	-	8.75	4.00	8.00	6.50	8.50	6.50
AHDB 9918 (1x)	-	7.00	2.75	0.75	6.50	7.25	3.25
AHDB 9918 (2x)	-	5.75	0.00	0.00	4.50	6.00	2.00
Aclonifen 0.5 L/ha	-	8.75	7.00	6.50	8.25	9.00	9.00
Aclonifen 1.0 L/ha	-	9.00	8.75	6.50	9.00	7.75	9.00
Aclonifen 2.0 L/ha	-	9.00	8.25	8.50	7.50	6.75	9.00
-	AHDB 9918 (0.5x)	7.75	7.50	5.25	8.25	7.00	4.75
-	AHDB 9918 (1x)	8.25	5.50	1.25	7.75	8.75	5.00
-	AHDB 9918 (2x)	8.25	2.00	1.25	6.75	7.25	2.50
-	Aclonifen 0.5 L/ha	6.75	5.25	6.25	6.00	7.50	7.50
-	Aclonifen 1.0 L/ha	7.25	7.75	6.50	5.75	8.25	5.50
-	Aclonifen 2.0 L/ha	8.00	7.00	7.50	6.50	7.50	6.50
-	AHDB 9981 (0.5x)	8.50	8.75	8.00	5.75	8.25	9.00
-	AHDB 9981 (1x)	8.50	8.50	9.00	6.00	6.50	8.75
-	AHDB 9981 (2x)	8.75	8.75	8.25	6.75	6.25	9.00
-	Centurion Max 0.5 L/ha	8.25	7.75	9.00	8.50	9.00	9.00
•	Centurion Max 1.0 L/ha	9.00	8.75	8.50	9.00	9.00	9.00
-	Centurion Max 2.0 L/ha	8.00	8.00	9.00	9.00	9.00	9.00
-	Oblix 500 1.0 L/ha	7.00	6.75	9.00	9.00	8.75	6.00
-	Oblix 500 2.0 L/ha	6.75	6.00	7.50	8.75	9.00	6.50
-	Oblix 500 4.0 L/ha	5.00	6.25	4.75	8.50	8.00	3.00
-	AHDB 9887 (0.5x)	6.25	6.75	8.50	8.50	9.00	8.00
-	AHDB 9887 (1x)	6.00	7.50	3.50	9.00	9.00	5.75
-	AHDB 9887 (2x)	5.75	6.00	1.00	8.75	9.00	3.00
	F prob. value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	d.f.	84	84	84	84	84	84
	S.E.D.	1.018	1.186	0.818	0.6792	0.776	0.888
	L.S.D.	2.025	2.359	1.627	1.3507	1.544	1.766

Conclusions **Pre-planting**

Aclonifen was safe to nearly all the herb species (chamomile, mint, sage, tarragon and thyme) in the trial when applied at up to 2.0 L/ha, with the exception of oregano which was not safe to use pre-planting at any rate

- Devrinol 450 SC was safe to chamomile, mint, sage and thyme up to an application rate of 2.8 L/ha, and oregano up to 1.4 L/ha. However, it has subsequently been approved for use at a lower rate of 0.85 L/ha, which indicates it would be safe to use in all the herbs listed above at the current authorised rate
- AHDB 9918 was only safe to tarragon at this pre-planting application timing.

Post-planting

- Centurion Max was safe to all herbs in the trial (chamomile, mint, oregano, sage, tarragon and thyme) when applied up to a rate of 2.0 L/ha.
- Aclonifen was more damaging when applied at a post-planting timing, and was safe only to chamomile, tarragon and thyme at 0.5 L/ha. Above this rate scorch and chlorosis was seen.
- AHDB 9981 was safe to chamomile, mint, oregano and thyme.
- Oblix 500 (ethofumesate) was safe to mint and oregano up to 1.0 L/ha, and safe to sage and tarragon up to 4.0 L/ha.
- AHDB 9887 is safe to oregano and thyme at half dose, and mint, sage and tarragon at double dose.
- AHDB 9918 was only safe to use over chamomile and tarragon post-planting.

Take Home Message

There is at least one promising pre- and post-planting herbicide for each herb species which can be taken forward for testing in the field, as well warranting investigation for EAMU authorisation.

Objectives

1. To test the crop safety of pre- and post-emergence herbicides on six species of transplanted herbs.

Trial conduct

UK regulatory guidelines were followed but EPPO guidelines took precedence. The following EPPO guidelines were followed:

Relevant EPPO gui	Relevant EPPO guideline(s)		
EPPO PP1/135(4)	Phytotoxicity assessment	None	
EPPO PP1/152(4)	Guideline on design and analysis of efficacy evaluation trials	None	
EPPO PP1/225 (2)	Minimum effective dose	None	
EPPO PP1/181 (4)	Conduct and reporting of efficacy evaluation trials including good experimental practice	None	
EPPO PP 1/214(3)	Principles of acceptable efficacy	None	
EPPO PP 1/224(2)	Principles of efficacy evaluation for minor uses	None	

There were no deviations from EPPO guidance.

Test site

Item	Details
Location address	ADAS Boxworth (hard standing)
	Battle Gate Road
	Boxworth
	CB23 4NN
	Cambridgeshire
	Grid reference: TL 34330 63366
Crop	Herbs
Cultivar	Chamomile, mint, oregano, sage, tarragon, thyme
Soil or substrate type	Sterilised loam mix (Rothamsted 'weed mix' - sterilised Kettering
	loam and lime free grit 3-6mm in a 4:1 ratio, plus 2kg/m ³
	Osmacote mini 5-6 months 4:1 loam:grit)
Agronomic practice	N/A
Prior history of site	N/A

Trial design

Item	Details
Trial design:	Fully randomised block
Number of replicates:	4
Plot size:	2L pot
Number of plants per plot:	10
Leaf Wall Area calculations	N/A

Treatment details

AHDB code	Active substance	Product name/ manufacture rs code	Formulation batch number	Content of active substance in product (g/L)	Formulation type
N/A	Napropamide	Devrinol 450 SC	429H	450	Suspension Concentrate
AHDB 9918	N/D	N/D	N/D	N/D	N/D
N/A	Aclonifen	Bandur/ Emerger	EV56006446	600	Suspension Concentrate
AHDB 9981	N/D	N/D	N/D	N/D	N/D
N/A	Clethodim	Centurion Max	N/K	120	Emulsifiable Concentrate
N/A	Ethofumesate	Oblix 500	15018151	500	Suspension Concentrate
AHDB 9887	N/D	N/D	N/D	N/D	N/D

Application schedule

Treatme nt number	Treatment: product name or AHDB code	Rate of active substance (ml or g a.s./ha)	Rate of product (I/ha)	Application code
1	Untreated	-	-	-
2	Devrinol 450 SC	630	1.4 L/ha	Α
3	Devrinol 450 SC	1260	2.8 L/ha	Α
4	Devrinol 450 SC	2520	5.6 L/ha	Α
5	AHDB 9918	N/D	0.24 L/ha	Α
6	AHDB 9918	N/D	0.48 L/ha	Α
7	AHDB 9918	N/D	0.96 L/ha	Α
8	Aclonifen	300	0.5 L/ha	Α
9	Aclonifen	600	1.0 L/ha	Α
10	Aclonifen	900	2.0 L/ha	Α
11	AHDB 9918	N/D	0.24 L/ha	В
12	AHDB 9918	N/D	0.48 L/ha	В
13	AHDB 9918	N/D	0.96 L/ha	В
14	Aclonifen	300	0.5 L/ha	В
15	Aclonifen	600	1.0 L/ha	В
16	Aclonifen	900	2.0 L/ha	В
17	AHDB 9981	N/D	1.0 kg/ ha	В
18	AHDB 9981	N/D	2.0 kg/ ha	В
19	AHDB 9981	N/D	4.0 kg/ ha	В
20	Centurion Max	60	0.5 L/ha	В
21	Centurion Max	120	1.0 L/ha	В
22	Centurion Max	240	2.0 L/ha	В
23	Oblix 500	500	1.0 L/ha	В
24	Oblix 500	1000	2.0 L/ha	В
25	Oblix 500	2000	4.0 L/ha	В
26	AHDB 9887	N/D	0.5 L/ha	В
27	AHDB 9887	N/D	1.0 L/ha	В
28	AHDB 9887	N/D	2.0 L/ha	В

Application details

Application details		
	Application A	Application B
Application date	20/06/2018	29/06/2018
Time of day	14:00 – 15:00	09:00 – 14:00
Crop growth stage (Max, min average BBCH)	N/A	25
Crop height (cm)	N/A	5 – 10cm depending on species
Crop coverage (%)	N/A	65 - 70%
Application Method	spray	spray
Application Placement	soil	foliar
Application equipment	Oxford Precision Sprayer (knapsack)	Oxford Precision Sprayer (knapsack)
Nozzle pressure	2.4 bar	2.4 bar
Nozzle type	flat fan	flat fan
Nozzle size	02F110	02F110
Application water volume/ha	200	200
Temperature of air (°C)	27.8	25.4
Relative humidity (%)	36.8	31.5
Wind speed range (mph)	9.2 – 9.7	6.4 – 9.5
Dew presence (Y/N)	N	N
Temperature of soil - 10 cm (°C)	N/K	N/K
Wetness of soil - 2-5 cm	damp	damp
Cloud cover (%)	15	30

Assessment details

date	Evaluation Timing (DA)*	Growth Stage	type (efficacy,	What was assessed and how (e.g. dead or live pest; disease incidence and severity; yield, marketable quality)
25/07/2018	30	29	vigour	Crop vigour (% size reduction compared to UTC; visual comparison, scored 0-9)
13/08/2018	49	48-51	vigour	Crop vigour (% size reduction compared to UTC; visual comparison, scored 0-9)

^{*} DA – days after application A

Statistical analysis

The trial design was a fully randomised block design, with four replicates of twenty-eight treatments, including an untreated control.

All data were analysed by ANOVA using Genstat 16.0 by Emily Lawrence at RSK ADAS.

Results

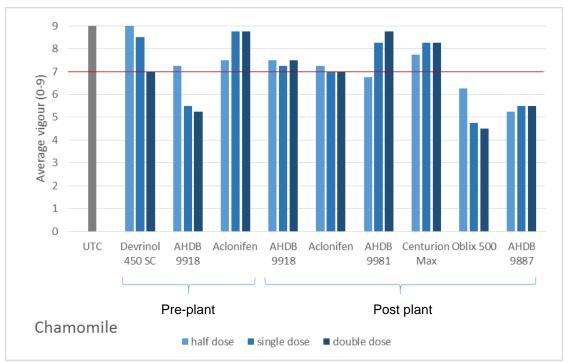
VIGOUR

The results for the mean vigour per treatment for each herb variety are presented in Table .

Vigour was recorded using the following scale:

Crop vigour score	Equivalent to crop damage (% quality reduction)
0	complete crop death
1	80-90% reduction
2	70-80%
3	60-70%
4	50-60%
5	40-50%
6	30-40%
7*	20-30%
8	10-20%
9	no quality reduction

^{* 7 =} minimum level of acceptable vigour reduction, i.e. damage unlikely to reduce yield, and acceptable to grower.


Table 2. Mean vigour scores for each herb variety – final assessment, 13th August 2018. Scored from 0 to 9; 0 = complete crop death, 9 = no quality reduction, scores <7 deemed commercially unacceptable damage (*highlighted in red*).

Application A (pre-plant)	Application B (post-plant)	СНА	MINT	ORE	SAGE	TAR	ТНҮ
Untreated	-	9.00	9.00	9.00	9.00	9.00	9.00
Devrinol 450 SC 1.4 L/ha	-	8.75	7.75	7.25	8.25	6.75	9.00
Devrinol 450 SC SC 2.8 L/ha	-	7.75	8.75	4.75	7.50	5.75	8.25
Devrinol 450 SC SC 5.6 L/ha	-	6.50	7.00	6.25	6.50	3.50	6.25
AHDB 9918 (0.5x)	-	8.75	4.00	8.00	6.50	8.50	6.50
AHDB 9918 (1x)	-	7.00	2.75	0.75	6.50	7.25	3.25
AHDB 9918 (2x)	-	5.75	0.00	0.00	4.50	6.00	2.00
Aclonifen 0.5 L/ha	-	8.75	7.00	6.50	8.25	9.00	9.00
Aclonifen 1.0 L/ha	-	9.00	8.75	6.50	9.00	7.75	9.00
Aclonifen 2.0 L/ha	-	9.00	8.25	8.50	7.50	6.75	9.00
-	AHDB 9918 (0.5x)	7.75	7.50	5.25	8.25	7.00	4.75
-	AHDB 9918 (1x)	8.25	5.50	1.25	7.75	8.75	5.00

Application A (pre-plant)	Application B (post-plant)	СНА	MINT	ORE	SAGE	SAGE TAR	
-	AHDB 9918 (2x)	8.25	2.00	1.25	6.75	7.25	2.50
-	Aclonifen 0.5 L/ha	6.75	5.25	6.25	6.00	7.50	7.50
-	Aclonifen 1.0 L/ha	7.25	7.75	6.50	5.75	8.25	5.50
-	Aclonifen 2.0 L/ha	8.00	7.00	7.50	6.50	7.50	6.50
-	AHDB 9981 (0.5x)	8.50	8.75	8.00	5.75	8.25	9.00
-	AHDB 9981 (1x)	8.50	8.50	9.00	6.00	6.50	8.75
-	AHDB 9981 (2x)	8.75	8.75	8.25	6.75	6.25	9.00
-	Centurion Max 0.5 L/ha	8.25	7.75	9.00	8.50	9.00	9.00
-	Centurion Max 1.0 L/ha	9.00	8.75	8.50	9.00	9.00	9.00
-	Centurion Max 2.0 L/ha	8.00	8.00	9.00	9.00	9.00	9.00
-	Oblix 500 1.0 L/ha	7.00	6.75	9.00	9.00	8.75	6.00
-	Oblix 500 2.0 L/ha	6.75	6.00	7.50	8.75	9.00	6.50
-	Oblix 500 4.0 L/ha	5.00	6.25	4.75	8.50	8.00	3.00
-	AHDB 9887 (0.5x)	6.25	6.75	8.50	8.50	9.00	8.00
-	AHDB 9887 (1x)	6.00	7.50	3.50	9.00	9.00	5.75
-	AHDB 9887 (2x)	5.75	6.00	1.00	8.75	9.00	3.00
	F prob. value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	d.f.	84	84	84	84	84	84
	S.E.D.	1.018	1.186	0.818	0.6792	0.776	0.888
	L.S.D.	2.025	2.359	1.627	1.3507	1.544	1.766

Chamomile

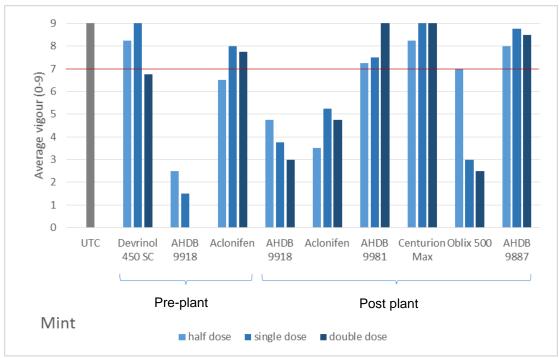

Pre-planting application of Aclonifen up to 4.0 L/ha or Devrinol 450 SC at up to 2.8 L/ha, and post-planting application of AHDB 9918, AHDB 9981 and Centurion Max had little effect on chamomile vigour (Table 2, Figure 1). Pre-planting application of AHDB 9918 at half rate appeared close to crop safe, but foliar bleaching was seen where the full rate of the treatment had been applied, and the double rate of the treatment caused a significant reduction in vigour exhibited as stunting. As the activity of this product is residual, it is not surprising that greater effects are seen pre-planting compared to post-planting. Chamomile treated after planting with Aclonifen at 1.0 L/ha showed some scorching, but this effect was not seen at a higher rate. However, there was still some reduction in vigour from a post-planting application of aclonifen. Post-planting application of Oblix 500 or AHDB 9887 at any rate gave a significant reduction in vigour of the chamomile, and caused foliar scorching (see Appendix, section c).

Figure 1. Mean vigour scores for chamomile treated with various herbicides, at half, single or double dose rate. Applications were onto soil (pre-planting), or foliar (post-planting). Assessment carried out 49 days after treatment. Scores of 7 or above deem acceptable vigour (as indicated by red line).

Mint

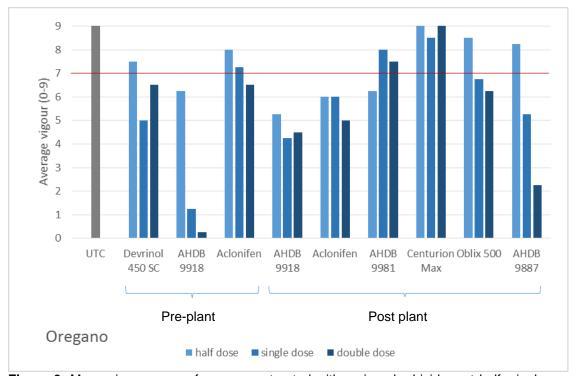

Pre-planting application of Devrinol 450 SC up to 2.8 L/ha, and post-planting application of, AHDB 9981, Centurion Max and AHDB 9887 appeared to have little effect on mint vigour and could be crop safe to mint (Table 2, Figure 2). Pre-planting application of AHDB 9918 at any rate had a notable significant reduction in vigour of the mint, causing scorching, stunting and plant death (see Appendix, section c). Post-planting application of AHDB 9918 did not cause plant death, but still gave a significant reduction in vigour and caused some foliar scorch, especially when applied at higher rates. Oblix 500 applied post-planting appeared crop safe when applied at 1.0 L/ha, but crop vigour was significantly reduced when applied above this rate. Post-planting application of Aclonifen at any rate gave a significant reduction in the vigour of mint, causing foliar scorching and yellowing.

Figure 2. Mean vigour scores for mint treated with various herbicides, at half, single or double dose rate. Applications were onto soil (pre-planting), or foliar (post-planting). Assessment carried out 49 days after treatment. Scores of 7 or above deem acceptable vigour (as indicated by red line).

Oregano

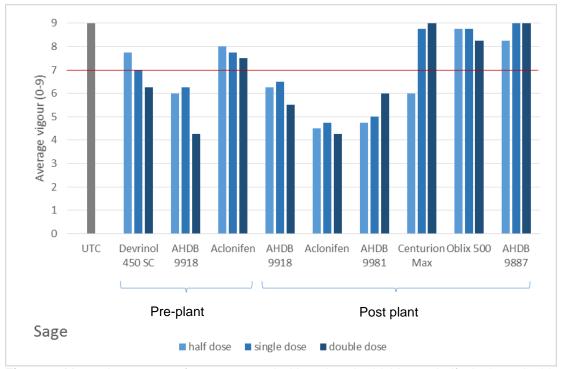

Post-planting application of Centurion Max up to 2.0 L/ha (double dose) had little effect on oregano vigour (Table 2, Figure 3), and AHDB 9981 applied post-planting up to double dose only had a slight effect on vigour. Pre-planting application of Devrinol 450 SC at 1.4 L/ha (half dose) and Aclonifen up to 1.0 L/ha (single dose) appear to be crop safe, and although there was a reduction in vigour it was deemed acceptable. AHDB 9887 was crop safe at half rate, but application at full or twice full rate caused foliar scorch and plant death. Oblix 500 appeared crop safe at 1.0 L/ha (half dose) when applied post-planting but any oregano treated above this rate was significantly stunted. Application of AHDB 9918 either pre or post planting at any rate gave a significant reduction in the vigour of oregano, causing foliar scorching and plant death at higher rates. Aclonifen applied post-planting was also not safe causing significant stunting.

Figure 3. Mean vigour scores for oregano treated with various herbicides, at half, single or double dose rate. Applications were onto soil (pre-planting), or foliar (post-planting). Assessment carried out 49 days after treatment. Scores of 7 or above deem acceptable vigour (as indicated by red line).

Sage

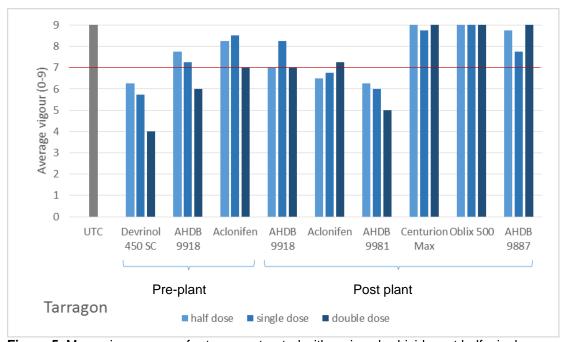

Pre-planting application of Aclonifen, and post-planting application of Centurion Max, Oblix 500 or AHDB 9887 were crop safe at any of the treatment rates (Table 2, Figure 4). Pre- or post-planting application of AHDB 9918, and post-planting application of Aclonifen or AHDB 9981 at any rate had a significant effect on the vigour of the sage, with plants exhibiting foliar scorching and stunted growth. Devrinol 450 SC applied pre-planting up to 2.8 L/ha (single dose), appeared crop safe, but at twice normal application rate, the sage plants showed foliar scorching.

Figure 4. Mean vigour scores for sage treated with various herbicides, at half, single or double dose rate. Applications were onto soil (pre-planting), or foliar (post-planting). Assessment carried out 49 days after treatment. Scores of 7 or above deem acceptable vigour (as indicated by red line).

Tarragon

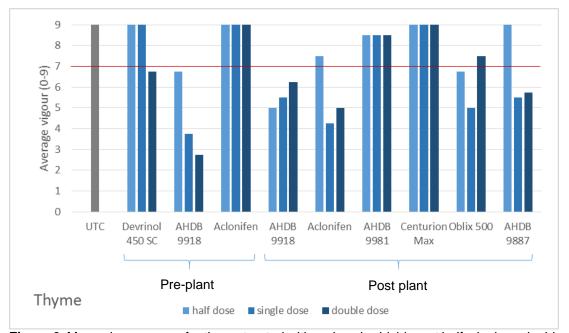

AHDB 9918, Centurion Max, Oblix 500 or AHDB 9887 appeared crop safe at all the rates tested in the trials post-planting (Table 2, Figure 5). Pre-planting application of Devrinol 450 SC or post-planting application of AHDB9981 was not crop safe at any treatment rate, with the tarragon showing foliar scorching and stunting. AHDB 9918 or Aclonifen applied up to 1.0 L/ha pre-planting appeared safe to tarragon when applied at lower rates (single dose or below), but application of double dose rate appeared to scorch and stunt plants.

Figure 5. Mean vigour scores for tarragon treated with various herbicides, at half, single or double dose rate. Applications were onto soil (pre-planting), or foliar (post-planting). Assessment carried out 49 days after treatment. Scores of 7 or above deem acceptable vigour (as indicated by red line).

Thyme

Pre-planting application of Aclonifen, and post-planting application of AHDB 9981 or Centurion Max appeared crop safe at all the application rates used in the trials (Table 2, Figure 6). AHDB 9918 applied at any rate pre- or post-planting, and any rate of OBLIX 500 applied post-planting showed a significant impact on the vigour of the thyme plants, scorching the thyme, with dead leaf tips on the Oblix 500 treated plants. Pre-planting Devrinol 450 SC at 1.4 L/ha (half dose), and post-planting Aclonifen at 0.5 L/ha (half dose) or AHDB 9887 at half dose appeared crop safe, but higher rates of these treatments reduced crop vigour.

Figure 6. Mean vigour scores for thyme treated with various herbicides, at half, single or double dose rate. Applications were onto soil (pre-planting), or foliar (post-planting). Assessment carried out 49 days after treatment. Scores of 7 or above deem acceptable vigour (as indicated by red line).

Conclusions

Pre-planting

- Aclonifen was safe to nearly all the herb species (chamomile, mint, sage, tarragon and thyme) in the trial when applied at up to 2.0 L/ha, with the exception of oregano which it was not safe to use on pre-emergence at any rate
- Devrinol 450 SC was safe to chamomile, mint, sage and thyme up to an application rate of 2.8 L/ha, and oregano up to 1.4 L/ha. However, it has subsequently been approved for use at a lower rate of 0.85 L/ha, which indicates it would be safe to use in all the herbs listed above at the current authorised rate
- AHDB 9918 was only safe to tarragon at this application timing.

Post-planting

- Centurion Max was safe to all herbs in the trial (chamomile, mint, oregano, sage, tarragon and thyme) when applied up to a rate of 2.0 L/ha.
- Aclonifen was more damaging when applied at a post-planting timing, and was safe only to chamomile, tarragon and thyme at 0.5 L/ha. Above this rate scorch and chlorosis was seen.
- AHDB 9981 was safe to chamomile, mint, oregano and thyme.
- Oblix 500 (ethofumesate) was safe to mint and oregano up to 1.0 L/ha, and safe to sage and tarragon up to 4.0 L/ha.
- AHDB 9887 is safe to oregano and thyme at half dose, and mint, sage and tarragon at double dose.
- AHDB 9918 was only safe to use over chamomile and tarragon post-planting.

Acknowledgements

AHDB for funding the work, and also the crop protection companies for their financial contributions as well as providing samples for the trials. Thanks should also be given to the BHTA, particularly Claire Donkin and Rob Gibb for their technical input.

Appendix

a. Crop diary – events related to growing crop

Crop	Cultivar	Planting date
	Chamomile	20/06/18
	Mint	
Harba	Oregano	
Herbs	Sage	
	Tarragon	
	Thyme	

Details of irrigation regime

Date	Type, rate and duration	Amount applied (mm)			
N/A	Watering by hand as	Not recorded, varied by			
IN/A	necessary necessary	weather conditions			

b. Table showing sequence of events by date – this relates to treatments and assessments

Date	Event
20/06/2018	Applied pre-planting treatments (Timing A, treatments 2 to 10).
29/06/2018	Applied post-planting treatment (Timing B, treatments 11 to 28).
25/07/2018	Carried out vigour assessment.
13/08/2018	Carried out vigour assessment.

c. Climatological data during study period from each site.

Date	Min. temp. (°C)	Max. temp. (°C)	Av. Humidity (%)	Total rainfall (mm)
25/05/2018	9.2	15.9	94.0	5.3
26/05/2018	10.5	22.6	72.1	0.0
27/05/2018	9.6	24.8	75.3	1.1
28/05/2018	10.5	22.6	88.4	0.0
29/05/2018	9.6	13.6	97.4	0.5
30/05/2018	9.6	16.8	92.8	3.5
31/05/2018	12.7	22.2	85.8	0.0
01/06/2018	14.1	22.2	83.9	0.1
02/06/2018	15.0	16.4	93.6	0.0
03/06/2018	14.5	23.0	68.5	0.0
04/06/2018	10.5	14.5	90.6	0.1
05/06/2018	6.8	14.1	78.7	0.2
06/06/2018	5.6	19.1	73.4	0.0
07/06/2018	8.4	17.3	76.1	1.0
08/06/2018	8.4	18.2	77.1	0.0
11/06/2018	13.2	23.0	51.2	0.0
12/06/2018	9.2	16.4	78.6	0.0
13/06/2018	19.5	20.9	47.0	0.0
14/06/2018	10.0	18.2	67.1	0.0
15/06/2018	7.6	20.4	58.7	0.0
16/06/2018	10.5	19.1	68.5	0.0

Date	Min. temp. (°C)	Max. temp. (°C)	Av. Humidity (%)	Total rainfall (mm)
17/06/2018	9.2	17.3	75.8	0.0
18/06/2018	13.2	23.0	71.2	0.0
19/06/2018	15.0	23.0	71.5	0.0
20/06/2018	11.8	22.6	72.9	0.0
21/06/2018	7.6	17.7	54.9	0.0
22/06/2018	6.8	19.1	52.9	0.0
23/06/2018	8.0	21.3	55.7	0.0
24/06/2018	7.6	23.0	59.7	0.0
25/06/2018	10.5	27.4	50.3	0.0
26/06/2018	8.8	26.5	58.9	0.0
27/06/2018	10.0	24.8	63.7	0.0
28/06/2018	8.4	24.3	73.0	0.0
29/06/2018	9.6	24.3	69.8	0.0
30/06/2018	11.4	26.1	57.5	0.0
01/07/2018	9.6	27.0	52.8	0.0
02/07/2018	11.4	26.1	47.8	0.0
03/07/2018	9.2	23.5	54.6	0.0
04/07/2018	8.8	24.3	57.2	0.0
05/07/2018	13.2	28.3	55.1	0.0
06/07/2018	13.2	26.5	62.4	0.0
07/07/2018	15.0	27.8	58.1	0.0
08/07/2018	13.6	27.4	57.3	0.0
09/07/2018	13.6	25.2	60.9	0.0
10/07/2018	11.8	17.3	74.1	0.0
11/07/2018	10.5	18.6	80.2	0.0
12/07/2018	10.0	19.5	77.1	0.0
13/07/2018	9.2	23.0	67.5	0.0
14/07/2018	11.4	26.5	61.8	0.0
15/07/2018	12.3	28.7	50.6	0.0
16/07/2018	12.7	27.8	50.5	0.0
17/07/2018	12.3	22.2	57.1	0.0
18/07/2018	13.2	23.5	50.0	0.0
19/07/2018	14.5	26.1	50.9	0.0
20/07/2018	13.6	25.2	59.5	0.0
21/07/2018	13.6	26.1	59.4	0.0
22/07/2018	14.5	23.9	62.4	0.0
23/07/2018	15.9	29.6	53.5	0.0
24/07/2018	15.5	27.8	54.5	0.0
25/07/2018	15.5	28.3	54.2	0.0
26/07/2018	16.4	31.7	57.6	2.5
27/07/2018	17.3	31.1	67.8	16.6
28/07/2018	13.6	21.3	63.9	0.5
29/07/2018	13.6	19.5	82.3	0.5
30/07/2018	15.0	22.6	71.1	0.1
31/07/2018	14.1	23.5	62.5	0.7
01/08/2018	10.9	24.3	55.0	0.0
02/08/2018	12.3	28.3	57.7	0.0

d. Example of phytotoxic effects

Scorch from Oblix 500 at half, full and twice full rate (L-R), applied to foliage post-planting (crop pictured on 02/08/2018, 38 days after treatment).

Scorch and stunting from AHDB 9918 at half, full and twice full rate (L-R), applied to potted soil pre-planting of mint (crop pictured on 02/08/2018, 44 days after treatment).

e. Trial design (extract, block 1 of 4)

	BLOCK 1													
PLOT	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	24	18	10	3	9	24	16	6	7	5	19	17	14	17
	Dill	Par	Fen	Par	Fen	Par	Cor	Par	Cor	Cor	Dill	Par	Fen	Dill
PLOT	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	26	6	3	23	11	20	2	17	5	19	12	8	5	23
	Fen	Cor	Chiv	Chiv	Par	Cor	Cor	Fen	Bas	Par	Par	Bas	Chiv	Dill
PLOT	29	30	31	32	33	34	35	36	37	38	39	40	41	42
	21	23	10	9	4	22	25	11	27	5	2	14	11	15
	Cor	Fen	Cor	Cor	Bas	Chiv	Cor	Cor	Chiv	Par	Dill	Cor	Chiv	Chiv
PLOT	43	44	45	46	47	48	49	50	51	52	53	54	55	56
	5	1	25	22	10	21	8	14	16	10	14	28	17	15
	Dill	Dill	Par	Dill	Bas	Chiv	Par	Par	Par	Chiv	Bas	Bas	Bas	Dill
PLOT	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	3	4	14	15	25	15	10	24	7	13	24	19	19	26
	Bas	Cor	Chiv	Bas	Fen	Cor	Par	Bas	Par	Dill	Fen	Cor	Fen	Cor
PLOT	71	72	73	74	75	76	77	78	79	80	81	82	83	84
	9	26	2	8	9	6	13	5	18	2	16	7	20	28
	Chiv	Bas	Bas	Dill	Dill	Bas	Fen	Fen	Chiv	Chiv	Chiv	Bas	Fen	Par
PLOT	85	86	87	88	89	90	91	92	93	94	95	96	97	98
	26	24	4	6	11	27	28	25	19	2	23	22	16	9
	Chiv	Cor	Chiv	Chiv	Fen	Dill	Chiv	Bas	Chiv	Par	Cor	Par	Bas	Par
PLOT	99	100	101	102	103	104	105	106	107	108	109	110	111	112
	25	7	_1	13	26	18	20	1	14	21	3	23	23	6
	Dill	Dill	Bas	Bas	Par	Fen	Par	Cor	Dill	Dill	Cor	Par	Bas	Fen
PLOT	113	114	115	116	117	118	119	120	121	122	123	124	125	126
	9	10	8	15	11	12	28	6	27	18	1	8	13	22
	Bas	Dill	Chiv	Fen	Bas	Bas	Dill	Dill	Cor	Cor	Fen	Cor	Par	Bas
PLOT	127	128	129	130	131	132	133	134	135	136	137	138	139	140
	17	12	12	20	21	22	3	3	7	1	16	27	27	20
	Cor	Dill	Cor	Dill	Bas	Fen	Dill	Fen	Fen	Par	Dill	Bas	Fen	Bas
PLOT	141	142	143	144	145	146	147	148	149	150	151	152	153	154
	17	12	4	4	21	26	25	15	13	12	22	13	8	1
DI 07	Chiv	Fen	Par	Fen	Fen	Dill	Chiv	Par	Cor	Chiv	Cor	Chiv	Fen	Chiv
PLOT	155	156	157	158	159	160	161	162	163	164	165	166	167	168
	16	4	2	20	11	7	19	18	18	28	28	27	21	24
	Fen	Dill	Fen	Chiv	Dill	Chiv	Bas	Dill	Bas	Fen	Cor	Par	Par	Chiv

Official Recognition of Efficacy Testing Facilities or Organisations in the United Kingdom

This certifies that

RSK ADAS Ltd

complies with the minimum standards laid down in Regulation (EC) 1107/2009 for efficacy testing.

The above Facility/Organisation has been officially recognised as being competent to carry out efficacy trials/tests in the United Kingdom in the following categories:

Agriculture/Horticulture Stored Crops Biologicals and Semiochemicals

Date of issue:

1 June 2018

Effective date:

18 March 2018

Expiry date:

17 March 2023

Signature -

Marcon C12

Certification Number

ORETO 409

