

Grower Summary

AHDB Field Vegetable Centres – Brassicas,

Scotland – Swede bio-stimulants screen

FV 462

Final report 2021

Project title:	AHDB Field Vegetable Centres – Brassicas, Scotland – Swede bio-stimulants screen		
Project number:	FV 462		
Project leader:	Angela Huckle, ADAS Horticulture		
Report:	Final report, February 2021		
Previous report:	Annual report, December 2020		
Key staff:	Angela Huckle, ADAS Horticulture (report editor and field assessor)		
	Ewan Gage, ADAS Horticulture (report author)		
	Chris Dyer, ADAS Statistician		
	Jeff Layton, Kettle Produce		
	Euan Alexander, Kettle Produce		
	Duncan Carr, Oxford Agricultural Trials		
	James Rome, East of Scotland Growers		
Location of project:	Kettlehill, Scotland		
Industry Representative:	James Rome, East of Scotland Growers, Prestonhall Industrial Estate, Cupar, Fife		
Date project commenced:	1 April 2020		

DISCLAIMER

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

© Agriculture and Horticulture Development Board 2020. No part of this publication may be reproduced in any material form (including by photocopy or storage in any medium by electronic mean) or any copy or adaptation stored, published or distributed (by physical, electronic or other means) without prior permission in writing of the Agriculture and Horticulture Development Board, other than by reproduction in an unmodified form for the sole purpose of use as an information resource when the Agriculture and Horticulture Development Board or AHDB Horticulture is clearly acknowledged as the source, or in accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights reserved.

All other trademarks, logos and brand names contained in this publication are the trademarks of their respective holders. No rights are granted without the prior written permission of the relevant owners.

The results and conclusions in this report are based on an investigation conducted over a one-year period. The conditions under which the experiments were carried out and the results have been reported in detail and with accuracy. However, because of the biological nature of the work it must be borne in mind that different circumstances and conditions could produce different results. Therefore, care must be taken with interpretation of the results, especially if they are used as the basis for commercial product recommendations.

AUTHENTICATION

We declare that this work was done under our supervision according to the procedures described herein and that the report represents a true and accurate record of the results obtained.

Ewan Gage

Horticultural Consultant

ADAS Horticulture

Signature Date12 January 2022.

Report authorised by:

Angela Huckle

Associate Director - Crop Health

ADAS Horticulture

A. Huckle Signature

Date 11 February 2022

GROWER SUMMARY

Headline

- All treatment programmes in the experiment were safe to use over swedes with no adverse effects observed on the crop.
- By the conclusion of the trial one month after the third and final biostimulant application there were no significant differences in biomass measurements between the biostimulant treatments and the untreated control.
- There was good weather throughout the 2021 season and so it is possible that the potential benefits of biostimulant use were overshadowed by strong growth across the treatments and the control.

Background

Field vegetable production is facing a significant number of pressures including reduced availability of actives for pest/disease control, increased need to optimise fertiliser applications and mitigate increased frequency of climate-related stress. One potential route to addressing these influences could be the use of biostimulants, a heterogenous range of products which are reported to improve yields through a synergistic interaction with crop biology. Product ranges in this area have expanded in recent years, with a range of formulations based on different constituents such as seaweed extracts, growth promoting bacteria, phosphites, humic/fulvic acids or analogues of growth hormones - potentially in combination with a range of plant macro or micronutrients. These are widely reported to enhance plant resistance to abiotic and biotic stress, particularly mitigation for drought. For example, products which are reported to drive root growth (e.g. humic and fulvic acids) may improve the ability of the crops to absorb necessary water and nutrients under periods of drought stress. Similarly, foliar application of calcium may reduce the impact of rots (particularly in fruits prone to blossom end rot) under circumstances where the uptake of calcium from the soil is insufficient to meet the demands of crop growth. The relative novelty of many of these products, combined with the lack of on-label recommendations for specific horticultural crops can constrain the uptake of these products in the commercial horticulture sector. The objective of this trial is to compare a number of commercially available biostimulants and evaluate effects on crop growth and biomass of both roots (including the swede) and shoots, as well as any effects on crop health, where possible.

A range of biostimulant products were chosen to trial in discussion with East of Scotland Growers and Kettle Produce and shortlisted to ten programmes.

Summary

Methods

This trial was located in a commercial field of swedes near Kettlehill in Scotland within a crop of the commercially grown variety of swede, Magres, drilled on 29 April. The trial design comprised a fully randomised block design with 10 treatments (Table 4 and 5), including one untreated control and was replicated five times. An area of 11 metres wide gave a total trial area of 11 m x 120 m (1320 m²). Plots were 10 m of a 2.0 m-wide bed, comprising five rows of swede. Altogether the trial was seven beds wide including guards either side of the trial. A 1 m² area across the width of the bed was used for all assessments and excluded the 0.5 m at the end of each plot from the area to be assessed. One half of the plot was used for foliar assessments, while the remaining half was left for destructive assessments.

	Timing 1 – once seedlings established 3-4 leaves 18/6/21		Timing 2 – approx. 3 weeks after T1 application 15/7/21		Timing 3 – approx. 3 weeks after T2 application 12/8/21	
Tet a c						
Trt no	Product	Rate (L/ha or kg/ha)	Product	Rate (L/ha or kg/ha)	Product	Rate (L/ha or kg/ha)
1	Untreated control	-	Untreated control	-	Untreated control	-
2	Biofarmix 'H' Biofarmix 'M' Biofarmix 'A'	25.0 5.0 5.0	Biofarmix 'A'	15.0	Biofarmix 'A'	15.0
3	Kelpak	2.0	Bio 20	2.0	Bio 20	2.0
4	Bioforge	1.0	Stimulante Plus	1.0	Hold	1.5
5	Vit Amino	2.0	Vit Amino	2.0	MDS 602	2.0
6	AF Turret + AF Nurture	0.05 0.032	AF Phosphorous + AF Nurture	5.0 2.0	AF Phosphorous + AF Nurture	5.0 2.0
7	NTS Trio NTS Triple 10	2.0 1.5	NTS Trio NTS Triple 10	2.0 1.5	NTS Trio NTS Triple 10	2.0 1.5
8	TTL+ AF Pulsar	1.0 6.0	TTL+ AF Pulsar	2.5 6.0	TTL+ AF Pulsar	2.5 6.0
9	Yieldon	2.0	Yieldon	2.0	Yieldon	2.0
10	Megafol	3.0	Megafol	3.0	Megafol	3.0

 Table 1. Treatment programmes and timings of applications used in the trial

Table 2. The biostimulant product details and constituents from available label data. Coded product not included in the list due to confidentiality.

Product	Active ingredient (s)	Company
Biofarmix	H- Humic substances + organic substances +	BioFarmix
	microorganisms	
	M - Microbial consortium (more than 100	
	species)	
	A - Amino acid complex + organic substances +	
	microorganisms	
Bio 20	Kelp (18.5%) and nutrients – Nitrogen (13.2%),	Omex
	Phosphorous (13.2%), Potassium (13.2%) plus	
	trace elements (Fe, Mn, Cu, Zn, B, Co and Mo)	
TTL Plus	Fulvic and humic acids	Nutrimate
Kelpak	Organic biostimulant from kelp	Omex
Bioforge	Foliar spray with N (2%) and K (3%) along with	Stoller
	trace elements (Co and Mo).	
Stimulante Plus	Foliar spray containing auxins, cytokinins and	Stoller
	gibberellins.	
AF Turret	Starter fertiliser – Nitrogen (8.9%) Phosphorous	Aiva Fertilisers
	13.6%), plus Mg, S, Mn and Zn	
AF Nurture	Fulvic and humic acids plus Potassium (1.1%),	Aiva Fertilisers
	Mg, S, Ca and trace elements (So, Cu, Fe, Mn	
	and Zn)	
AF Phosphorous	Foliar nutrients inc phosphorous. Nitrogen (7%),	Aiva Fertilisers
	Phosphorous (13.8%), and Mg, S and Zn	
AF Pulsar	Foliar nutrients including N (6%) and trace	Aiva Fertilisers
	elements (S, Mg, Mn, Zn, Cu, B, Mo, Co and	
	Na).	
Hold	Foliar spray containing Ca	Stoller
TTL	Fulvic and humic acids	Nutrimate
MDS 602	Aqua, Ascorbic Acid, Vitamin P, Acetic Acid,	Microbial distribution
	Glycerine, Orange Extract, Seaweed extract,	
	Neem Extract, Garlic Extract,	
Yieldon	Foliar nutrients including N (3%), K (3%) and	Valagro
	trace elements (Mn, Mo, Zn)	
Megafol	Foliar nutrients including N (3%), K (8%) and	Valagro
	various vitamins, amino acids and proteins,	
	betaines and growth factors	

Product	Active ingredient (s)	Company
NTS Trio	Foliar fertiliser based on 13.73% N, 0.1%K and	Nutri-Tech Solutions
	15.3% Ca with Mg, B and Fe alongside fulvica	
	acid and mannitol derived from kelp.	
NTS Triple 10	A liquid 10-10-10 fertiliser with trace elements	Nutri-Tech Solutions
	and natural growth promoters.	

The swedes were netted for insect exclusion, and the treatments were sprayed through the net as per commercial practice. Treatments were applied using a precision knapsack sprayer with a 2.0 metre boom and 02F110 nozzles at medium quality and 200 litres per hectare water volume. All treatments were applied post-planting at the following timings:

- Timing 1: 18th June –post-emergence, once seedlings are established (4-5 leaves)
- Timing 2: 15th July 30 cm height foliage early root formation 4 cm
- Timing 3: 12th August 40 cm height foliage roots expanding 10-15 cm

The crop growth stage was recorded at each spray application visit.

A single destructive assessment was carried out at harvest to assess yield outputs over two days on 28th and 29th September. All roots were lifted, the plants were dug up and shaken carefully to remove as much soil as possible and to prevent the fine roots from tearing, and all plants in each plot were harvested for assessment. Total and marketable root number and weight was recorded, alongside numbers in specific categories of unmarketability (undersized, cabbage fly rot fly damage, club root presence or rots).

Discussion and Conclusion

All treatment programmes in the experiment were safe to use over swedes with no adverse effects observed on the crop. At harvest, there were no significant differences in total or marketable yields between treatments and the untreated control (Figure 1, Table 1). Two treatments (AF Turret + AF Nurture and NTS Trio + NTS Triple 10) showed marginally lower yields compared with the control, whilst three treatments (Kelpak, TTL + AF Pulsar and Megafol) gave yields greater than that of the control – although none of these differences were significant. Similarly, when individual marketable root weight was considered, there were no significant differences between treatments. In terms of unmarketable yield, there were also no significant differences in the causes of unmarketable roots between treatments.

These findings are comparable to trial results from 2020 which found no significant difference in yield outputs compared with the untreated control. However, conditions in the 2021 season were similarly good compared with 2020 – July was warm but with frequent rainfall, so that it

is unlikely that the crop was subject to any significant stresses. As a result, any differences due to the use of the biostimulant treatments may have been muted compared with the untreated control. However, it is possible that the use of these products under conditions of greater plant stress – especially drought – where the reported abilities of these products may further drive yield performance.

	T. Summary lightes for asse	Total Plot Fresh	Plot Marketable	Total Root	Marketable
	Treatment	Weight (kg)	Fresh Weight (kg)	Number	Root Number
1	Untreated control	9.2 ± 0.55	8.6 ± 0.63	21.8 ± 0.75	15 ± 1.22
	Biofarmix 'H', 'M', 'A'				
2	program	8.9 ± 0.61	8.2 ± 0.77	23.8 ± 1.11	15 ± 1.15
	Kelpak fb. Bio20 fb.				
3	Calmax Ultra	9.9 ± 0.77	8.9 ± 0.98	23.6 ± 2.5	14.6 ± 2.33
	Bioforge fb.				
	Stimulante Plus fb.				
4	Hold	9.5 ± 0.88	9 ± 0.96	21 ± 0.91	15.4 ± 1.85
	Vit Amino applied				
	twice then				
5	MDS 602	9.1 ± 0.84	8.3 ± 0.79	21.4 ± 1.56	17.6 ± 2.22
	AF Turret + AF				
	Nurture fb.				
	AF Phosphorous +				
6	AF Nurture x 2	8.5 ± 0.59	7.6 ± 0.76	21.8 ± 0.63	14.2 ± 0.95
	NTS Trio + NTS				
	Triple 10				
7	Applied 3 times	8.7 ± 0.61	7.6 ± 0.72	22.2 ± 0.95	14.6 ± 1.39
	TTL+ AF Pulsar				
8	applied 3 times	10.2 ± 0.9	9.5 ± 0.88	21.6 ± 2.82	16.6 ± 1.94
	Yieldon applied 3				
9	times	9.6 ± 0.37	9.2 ± 0.43	20.8 ± 1.38	15.6 ± 1.26
	Megafol applied 3				
10	times	10 ± 0.66	9.3 ± 0.57	20.4 ± 1.39	14.6 ± 1.61

Table 1. Summary figures for assessments taken at harvest from 1 m² area.

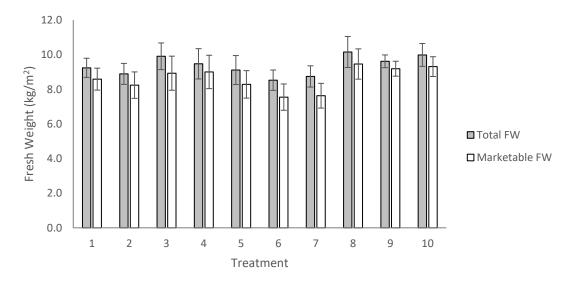


Figure 1. Total and marketable fresh weight yields per plot. For treatment codes see Table 2.

Financial Benefits

It is difficult to confidently determine the financial benefits of the use of biostimulants from this trial as there were no significant conclusions.